Abstract
The steady increase in human life expectancy in the 21st century is considered one of the major public health challenges. However, current achievements in longevity, are most often associated with increasing years in disability. Current studies indicate that healthy longevity is achieved, through harmonised ageing of the whole body. Due to the complexity of ageing, a number of biological age markers have been determined to describe the intensity of changes limiting biophysiological functions at different levels of the body. Biological age markers can be divided into two categories: parameters determining the level of severity of molecular and cellular hallmarks of ageing: genomic incapacity, telomere length changes, mitochondrial dysfunction, loss of proteostasis, epigenetic changes, cellular senescence, deregulation of nutrient sensitivity, stem cell depletion, altered intercellular communication. The second group are parameters defining age at the systemic level: bone age, muscle age, vascular age, neuronal age, endocrine age, pulmonary age, glycan age. Modern methods of measuring biological age markers allow the identification of weak points in ageing and illustrate the unevenness of the ageing process. It is worth considering the study of biological age markers to prioritise interventions promoting sustainable ageing.
References
(1) Salomon JA, Wang H, Freeman MK, Vos T, Flaxman AD, Lopez AD, et al. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study (2010). Lancet 2012; 380:2144-62. DOI:10.1016/S0140-6736(12)61690-0.
(2) Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 2013; 75:621-644.
(3) Kirkwood TB. Understanding the odd science of aging. Cell 2005; 120:437-447.
(4) Vijg J, Campisi J. Puzzles, promises and a cure for aging. Nature. 2008; 454:1065-1071.
(5) Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, Christensen K, Zmuda JM, Barral S, Lee JH, Simonsick EM, Walston JD, Yashin AI, Hadley E, Guralnik JM. Factors that contribute to the attainment of extreme longevity. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences 2010; 65(4):347-353. https://doi.org/10.1093/gerona/glp200.
(6) Harvard Health Publishing. (2019). Longevity: Genetics, lifestyle, and environment. Harvard Medical School. Web sites. https://www.health.harvard.edu/staying-healthy/longevity-genetics-lifestyle-and-environment.
(7) López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell 2013; 153(6):1194-1217. DOI:10.1016/j.cell.2013.05.039. PMID: 23746838.
(8) López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186(2):243-278. DOI:10.1016/j.cell.2022.11.001. PMID:36599349.
(9) Naito Y, Lee CM, Kato Y, Nagai R, Yonei Y. Oxidative stress markers. Anti-Aging Medicine 2010; 7:36-44.
(10) Kikuchi H, Furukawa Y, Iwamoto T, et al. Detection of oxidative stress and DNA damage in human liver transplant recipients by urinary 8-hydroxy-2'-deoxyguanosine analysis. Transplantation 2002; 74(7):934-938. DOI:10.1097/00007890-200210150-00019. PMID:12394888.
(11) Hoeijmakers JHJ. DNA damage, aging, and cancer. New England Journal of Medicine 2009; 361(15):1475-1485. DOI:10.1056/nejmra0804615.
(12) Kondo N, Takahashi A, Ono K, Ohnishi K, DNA Repair Research Group. DNA damage recognition proteins localize to DNA replication forks and contribute to replication checkpoint control. Genes to Cells 2010. 15(4):283-295. DOI:10.1111/j.1365-2443.2010.01383.x.
(13) O'Connor MJ. Targeting the DNA damage response in cancer. Molecular Cell 2015; 60(4):547-560. DOI:10.1016/j.molcel.2015.10.040.
(14) DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell 2015; 26:4524-31. DOI:10.1091/mbc.E14-06-1084.
(15) Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet 2012; 13:693-704. PubMed:22965356.
(16) Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell 2016; 61:654-666. DOI:10.1016/j.molcel.2016.01.028.
(17) Wang K, Klionsky DJ. Mitochondria removal by autophagy. Autophagy 2011; 7:297-300. DOI:10.4161/auto.7.3.14502.
(18) Kukliński B. Mitochondria. Diagnostyka uszkodzeń mitochondrialnych i skuteczne metody terapii. Mito-pharma, Gorzów Wielkopolski 2017.
(19) Chacko BK. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clinical Science 2014; 367-373.
(20) Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010; 11:554-565. PubMed:20519126.
(21) Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 475:324-332. PubMed:21776078.
(22) Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 2011; 10:205-215. PubMed:20152936.
(23) Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78:959-991. PubMed: 19298183.
(24) Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, García-Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS, et al. The ProteomeXchange consortium in 2020: enabling "big data" approaches in proteomics. Nucleic Acids Research 2020; 48(D1):D1145-D1152. DOI:10.1093/nar/gkz984. PMID:31612902.
(25) Wysokińska E, Kałas W. Metody badania autofagii oparte na przemianach białek MAP1LC3 i p62/SQSTM1*. (Detection of autophagy based on conversions of MAP1LC3 and p62/SQSTM1). Postepy Higieny i Medycyny Doswiadczalnej 2016; 70:1140-51. DOI:10.5604/17322693.1222193. PMID:27770734.
(26) Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14(10):R115. DOI:10.1186/gb-2013-14-10-r115. PMID: 24138928; PMCID: PMC4015143.
(27) Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine 2017; 21:29-36. DOI:10.1016/j.ebiom.2017. 03.046.
(28) Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010; 67(6):953-66.
(29) Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. Journal of Biological Chemistry 2012; 287(31):25541-8.
(30) DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell 2015; 26:4524-31. DOI:10.1091/mbc.E14-06-1084.
(31) Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-740. PubMed:17667954.
(32) Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130:223-233. PubMed:17662938.
(33) Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature 2011; 479:232-236. PubMed: 22048312.
(34) Brown-Borg HM, Sharma S, Borg KE, Rakoczy SG. Growth hormone and aging in mice. [In:] Sell C, Lorenzini A, Brown-Borg H, editors. Life-Span Extension. Aging Medicine. Humana Press 2009. DOI:10.1007/978-1-60327-507-1_7.
(35) Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW. Effect of aging on stem cells. World J Exp Med 2017; 7:1-10. DOI:10.5493/wjem.v7.i1.1.
(36) Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol 2010; 22:507-513. PubMed:20667703.
(37) Naito Y, Lee CM, Kato Y, Nagai R, Yonei Y. Oxidative stress markers. Anti-Aging Medicine 2010; 7:36-44.
(38) Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 2009; 5:279-289. PubMed: 19733540.
(39) Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012; 486:490-495. PubMed:22722868.
(40) Strategies for Reducing or Preventing the Generation of Oxidative Stress B. Poljsak * Oxid Med Cell Longev 2011; 2011:194586. Published online 2011 Dec 10. DOI:10.1155/2011/194586 PMCID: PMC3236599 PMID: 22191011.
(41) Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 2012; 148:46-57. PubMed: 22265401.
(42) Russell SJ, Kahn CR. Endocrine regulation of aging. Nat Rev Mol Cell Biol 2007; 8:681-691. PubMed:17684529.
(43) Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 2012; 4:166-175. PubMed:22411934.
(44) Freije JM, Lopez-Otin C. Reprogramming aging and progeria. Curr Opin Cell Biol 2012.
(45) Ottaviani E, Ventura N, Mandrioli M, Candela M, Franchini A, Franceschi C. Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms. Biogerontology 2011; 12:599-609. PubMed:21814818.
(46) Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 2011; 377:31-41. PubMed:21144578.
(47) Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Cheon GJ, Shin CH, Yang SW. Bone mineral density according to age, bone age, and pubertal stages in korean children and adolescents. J Clin Densitom 2010; 13(1):68-76. DOI:10.1016/j.jocd.2009.09.006. Epub 2009 Nov 26.
(48) Xue S, Kemal O, Lu M, Lix LM, Leslie WD, Yang S. Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005-2014. Bone 2020; 131:115163. DOI:10.1016/j.bone.2019.115163. Epub 2019 Nov 21.
(49) McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, Ferrucci L. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. The Journals of Gerontology: Series A 2014, 69(5):576-583.
(50) Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz A, Simonsick EM, Tylavsky FA, Visser M, Newman AB. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. The Journals of Gerontology: Series A 2006; 61(10):1059-1064.
(51) Frontera WR, Hughes VA, Lutz KJ, Evans WJ, et al. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. Journal of applied physiology 1991; 71(2):644-650.
(52) Power GA, Dalton BH, Behm DG, Vandervoort AA, Doherty TJ, et al. Short-term training for aging adults: motor and muscle function adaptations of functional vs. traditional resistance training. Scandinavian journal of medicine & science in sports 2013; 23(6):e341-e352.
(53) Verdijk LB, Dirks ML, Snijders T, Prompers JJ, Beelen M, Jonkers RA, van Loon LJ, et al. Reduced satellite cell numbers with spinal cord injury and aging in humans. Medicine & Science in Sports & Exercise 2014; 46(2), 203-212.
(54) Lakatta EG. The reality of aging viewed from the arterial wall. Artery research (2013); 7(2):73-80. https://doi.org/10.1016/j.artres.2013.04.001.
(55) Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Benjamin EJ, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 2010; 121(4):505-511. https://doi.org/10.1161/CIRCULATIONAHA.109.886655.
(56) Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2001: 101(9):948-954. https://doi.org/10.1161/01.CIR.101.9.948.
(57) Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, McCrindle BW, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 2009; 54(5):919-950. https://doi.org/10.1161/HYPERTENSIONAHA.109.192639.
(58) Ito H. Supporting system for anti-aging medical checkups, "Age Management Check". Modern Physician 2006; 26:605-8 (in Japanese).
(59) Ridderinkhof KR, Krugers HJ, et al. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Frontiers in Human Neuroscience 2022; 16:815759. https://doi.org/10.3389/fnhum.2022.815759.
(60) Feller S, Ferrari S, Cudré-Mauroux N, et al. DHEAS as a biomarker: its role in aging and age-related diseases. Hormone molecular biology and clinical investigation 2015; 21(1):17-39. https://doi.org/10.1515/hmbci-2014-0053.
(61) Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, et al. DHEAS levels and mortality risk in the elderly: the role of gender and functional capacity. Age 2016; 38(6):485-493. https://doi.org/10.1007/s11357-016-9924-4.
(62) Trifunović S, Vraneš HŠ, Hadžović-Džuvo A, Kudumović N, Krdžić B, Kulić M, at al. Dehydroepiandrosterone sulfate (DHEAS) as a biomarker of aging male population. Medical Archives 2017; 71(2)103-107. https://doi.org/10.5455/medarh.2017.71.103-107.
(63) Yonei Y. Significance of anti-aging medical checkups for the elderly. Nihon Ronen Igakkai Zasshi 2013; 50(6):780-3.
(64) Galizia G, Cacciatore F, Testa G, et al. Pulmonary age: a new biological marker of aging? Age (Dordr) 2014; 36(5):9739. DOI:10.1007/s11357-014-9739-y.
(65) Antonelli-Incalzi R, Corsonello A, Trojano L, et al. Relationship between FEV1 and peripheral blood leukocyte counts as markers of inflammation and aging in the elderly: a pilot study. Mech Ageing 2003; 124(3):347-350. DOI:10.1016/s0047-6374(03)00012-4.
(66) Agusti A, Calverley PM, Celli B, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res 2010; 11:122. DOI:10.1186/1465-9921-11-122.
(67) Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40(6):1324-1343. DOI:10.1183/09031936.00080312.
(68) Mattison SM, Subramanian A, Hoag JB, et al. Lung function and age: an evaluation of pulmonary age in healthy adults. Chest 2017; 151(3):408-415. DOI:10.1016/j.chest.2016.10.057.
(69) Lauc G, Pezer M, Rudan I, et al. Biological variation and reference intervals for human glycome. Biochim Biophys Acta 2016; 1860(8):1688-1692. DOI:10.1016/j.bbagen.2016.04.003.
(70) Krištić J, Vučković F, Menni C, et al. Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci 2014; 69(7):779-789. doi:10.1093/gerona/glt1.
This work is licensed under a Creative Commons Attribution 4.0 International License.