Abstrakt
Acinetobacter baumannii to notoryczny patogen oportunistyczny, znany ze swojej zdolności do wywoływania ciężkich infekcji, szczególnie u osób z obniżoną odpornością. Częstość występowania zakażeń wielolekoopornych A. baumannii rośnie w zastraszającym tempie. Chociaż tradycyjnie uważa się go za patogen zewnątrzkomórkowy, nowe odkrycia sugerują, że A. baumannii może przetrwać i replikować się w komórkach gospodarza, unikając w ten sposób odpowiedzi immunologicznej i leczenia przeciwdrobnoustrojowego. W tym artykule dokonano przeglądu ostatnich przypadków przetrwania wewnątrzkomórkowego i zbadano strategie przetrwania stosowane przez A. baumannii, w tym jego interakcje z maszynerią komórkową gospodarza i unikanie mechanizmów obronnych gospodarza. Zrozumienie tych mechanizmów ma kluczowe znaczenie dla opracowania leków celowanych, zwalczających zakażenia A. baumannii.
Bibliografia
Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin Microbiol Rev 2017; 30(1).
Falagas ME, Bliziotis IA, Siempos II. Attributable mortality of Acinetobacter baumannii infections in critically ill patients: A systematic review of matched cohort and case-control studies. Crit Care 2006; 10(2).
Moubareck CA, Halat DH. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Vol. 9, Antibiotics MDPI AG; 2020.
Shi J, Sun T, Cui Y, Wang C, Wang F, Zhou Y, et al. Multidrug resistant and extensively drug resistant Acinetobacter baumannii hospital infection associated with high mortality: A retrospective study in the pediatric intensive care unit. BMC Infect Dis 2020; 20(1).
Gottesman T, Fedorowsky R, Yerushalmi R, Lellouche J, Nutman A. An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infection Prevention in Practice 2021; 3(1).
Karakonstantis S, Gikas A, Astrinaki E, Kritsotakis EI. Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. Journal of Hospital Infection 2020; 106(3).
Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Vol. 11, Expert Review of Anti-Infective Therapy 2013.
Houang ETS, Sormunen RT, Lai L, Chan CY, Leong ASY. Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. J Clin Pathol 1998; 51(10).
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10(JULY).
Bruhn KW, Pantapalangkoor P, Nielsen T, Tan B, Junus J, Hujer KM, et al. Host fate is rapidly determined by innate effector-microbial interactions during Acinetobacter baumannii bacteremia. Journal of Infectious Diseases 2015; 211(8).
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Vol. 31, Trends in Microbiology 2023.
Cateau E, Verdon J, Fernandez B, Hechard Y, Rodier MH. Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumannii. Vol. 319, FEMS Microbiology Letters 2011.
Choi CH, Lee JS, Lee YC, Park TI, Lee JC. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol. 2008; 8.
Kamoshida G, Tansho-Nagakawa S, Kikuchi-Ueda T, Nakano R, Hikosaka K, Nishida S, et al. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8. J Leukoc Biol 2016; 100(6).
Qin QM, Pei J, Gomez G, Rice-Ficht A, Ficht TA, de Figueiredo P. A Tractable Drosophila Cell System Enables Rapid Identification of Acinetobacter baumannii Host Factors. Front Cell Infect Microbiol 2020; 10.
Sycz G, Venanzio G Di, Distel JS, Sartorio MG, Le NH, Scott NE, et al. Modern Acinetobacter baumannii clinical isolates replicate inside spacious vacuoles and egress from macrophages. PLoS Pathog 2021; 17(8).
Rubio T, Gagné S, Debruyne C, Dias C, Cluzel C, Mongellaz D, et al. Incidence of an Intracellular Multiplication Niche among Acinetobacter baumannii Clinical Isolates. mSystems 2022; 7(1).
Asensio NC, Rendón JM, Burgas MT. Time-resolved transcriptional profiling of epithelial cells infected by intracellular Acinetobacter baumannii. Microorganisms 2021; 9(2).
Sato Y, Unno Y, Miyazaki C, Ubagai T, Ono Y. Multidrug-resistant Acinetobacter baumannii resists reactive oxygen species and survives in macrophages. Sci Rep 2019; 9(1).
Distel JS, Di Venanzio G, Mackel JJ, Rosen DA, Feldman MF. Replicative Acinetobacter baumannii strains interfere with phagosomal maturation by modulating the vacuolar pH. PLoS Pathog 2023; 19(6).
Ambrosi C, Scribano D, Sarshar M, Zagaglia C, Singer BB, Palamara AT. Acinetobacter baumannii Targets Human Carcinoembryonic Antigen-Related Cell Adhesion Molecules (CEACAMs) for Invasion of Pneumocytes. mSystems. 2020; 5(6).
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Vol. 13, Frontiers in Cellular and Infection Microbiology 2023.
Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, et al. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 2010; 78(5).
Marszalik A, Sidor K, Kraśnicka A, Wróblewska M, Skirecki T, Jagielski T, et al. Acinetobacter baumannii – virulence factors and epidemiology of infections. Postępy Mikrobiologii – Advancements of Microbiology 2021; 60(4).
Sheldon JR, Skaar EP. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog 2020; 16(10).
Brossard KA, Campagnari AA. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 2012; 80(1).
Kikuchi-Ueda T, Ubagai T, Kamoshida G, Nakano R, Nakano A, Ono Y. Acinetobacter baumannii LOS regulate the expression of inflammatory cytokine genes and proteins in human mast cells. Pathogens 2021; 10(3).
Rumbo C, Tomás M, Moreira EF, Soares NC, Carvajal M, Santillana E, et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun 2014; 82(11).
Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 2009; 77(8).
Smani Y, Fab̀rega A, Roca I, Sańchez-Encinales V, Vila J, Pachón J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob Agents Chemother 2014; 58(3).
Catel-Ferreira M, Marti S, Guillon L, Jara L, Coadou G, Molle V, et al. The outer membrane porin OmpW of Acinetobacter baumannii is involved in iron uptake and colistin binding. FEBS Lett 2016; 590(2).
Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based Quantitative Proteomic Analysis of Acinetobacter baumannii under Hypoxia and Normoxia Reveals the Role of OmpW as a Virulence Factor. Microbiol Spectr 2022; 10(2).
Li ZT, Zhang RL, Bi XG, Xu L, Fan M, Xie D, et al. Outer membrane vesicles isolated from two clinical Acinetobacter baumannii strains exhibit different toxicity and proteome characteristics. Microb Pathog 2015; 81.
Fiester SE, Arivett BA, Schmidt RE, Beckett AC, Ticak T, Carrier MV, et al. Iron-Regulated phospholipase C Activity contributes to the cytolytic activity and virulence of Acinetobacter baumannii. PLoS One 2016; 11(11).
Ronish LA, Lillehoj E, Fields JK, Sundberg EJ, Piepenbrink KH. The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. Journal of Biological Chemistry 2019; 294(1).
Harding CM, Pulido MR, Di Venanzio G, Kinsella RL, Webb AI, Scott NE, et al. Pathogenic Acinetobacter species have a functional type i secretion system and contact-dependent inhibition systems. Journal of Biological Chemistry 2017; 292(22).
Elhosseiny NM, Attia AS. Acinetobacter: An emerging pathogen with a versatile secretome review-article. Vol. 7, Emerging Microbes and Infections 2018.
Weidensdorfer M, Ishikawa M, Hori K, Linke D, Djahanschiri B, Iruegas R, et al. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii. Virulence 2019; 10(1).
Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nat Microbiol 2018; 3(5).
Tierney ARP, Chin CY, Weiss DS, Rather PN. A LysR-Type Transcriptional Regulator Controls Multiple Phenotypes in Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11.
Tipton KA, Dimitrova D, Rather PN. Phase-variable control of multiple phenotypes in Acinetobacter baumannii strain AB5075. J Bacteriol 2015; 197(15).
Pérez-Varela M, Tierney ARP, Kim JS, Vázquez-Torres A, Rather P. Characterization of RelA in Acinetobacter baumannii. J Bacteriol 2020; 202(12).
Law SKK, Tan HS. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Vol. 260, Microbiological Research 2022.
García-Patiño MG, García-Contreras R, Licona-Limón P. The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections. Vol. 8, Frontiers in Immunology 2017.
Qiu H, KuoLee R, Harris G, Van Rooijen N, Patel GB, Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS One 2012; 7(6).
Riebisch AK, Mühlen S, Beer YY, Schmitz I. Autophagy – a story of bacteria interfering with the host cell degradation machinery. Vol. 10, Pathogens 2021.
Lee HJ, Woo Y, Hahn TW, Jung YM, Jung YJ. Formation and maturation of the phagosome: A key mechanism in innate immunity against intracellular bacterial infection. Vol. 8, Microorganisms 2020.
Akoolo L, Pires S, Kim J, Parker D. The Capsule of Acinetobacter baumannii Protects against the Innate Immune Response. J Innate Immun 2022.
Kale SD, Dikshit N, Kumar P, Balamuralidhar V, Khameneh HJ, Bin Abdul Malik N, et al. Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Sci Rep 2017; 7(1).
Bist P, Dikshit N, Koh TH, Mortellaro A, Tan TT, Sukumaran B. The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect Immun 2014; 82(3).
de Zoete MR, Flavell RA. Interactions between Nod-like receptors and intestinal bacteria. Vol. 4, Frontiers in Immunology 2013.
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Vol. 10, Frontiers in Cellular and Infection Microbiology 2020.
Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, et al. The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca²+– Dependent MAPK-Jnk Pathway. Cell Host Microbe 2017; 21(1).
Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, et al. Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application. Vol. 12, Vaccines 2024.
Kamoshida G, Kikuchi-Ueda T, Nishida S, Tansho-Nagakawa S, Ubagai T, Ono Y. Pathogenic bacterium Acinetobacter baumannii inhibits the formation of neutrophil extracellular traps by suppressing neutrophil adhesion. Front Immunol 2018; 9(FEB).
Baz AA, Hao H, Lan S, Li Z, Liu S, Chen S, et al. Neutrophil extracellular traps in bacterial infections and evasion strategies. Vol. 15, Frontiers in Immunology 2024.
An Z, Huang X, Zheng C, Ding W. Acinetobacter baumannii outer membrane protein A induces HeLa cell autophagy via MAPK/JNK signaling pathway. International Journal of Medical Microbiology 2019; 309(2).
Parra-Millán R, Guerrero-Gómez D, Ayerbe-Algaba R, Pachón-Ibáñez ME, Miranda-Vizuete A, Pachón J, et al. Intracellular Trafficking and Persistence of Acinetobacter baumannii Requires Transcription Factor EB. mSphere 2018; 3(2).
Wang Y, Zhang K, Shi X, Wang C, Wang F, Fan J, et al. Critical role of bacterial isochorismatase in the autophagic process induced by Acinetobacter baumannii in mammalian cells. FASEB Journal 2016; 30(10).
Lázaro-Díez M, Chapartegui-González I, Redondo-Salvo S, Leigh C, Merino D, Segundo DS, et al. Human neutrophils phagocytose and kill Acinetobacter baumannii and A. pittii. Sci Rep 2017; 7(1).
Qiu H, Kuolee R, Harris G, Chen W. Role of NADPH Phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun 2009; 77(3).
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, et al. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome . mSphere 2023; 8(5).
Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, et al. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 2013; 13(5).
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.