Abstrakt
Ostatnie lata przyniosły znaczny postęp w poznaniu patofizjologii rzadkich guzów neuroendokrynnych – guzów chromochłonnych i przyzwojaków (pheochromocytomas and paragangliomas (PPGLs)). Około 70 % PPGL związanych jest z mutacjami: germinalną lub somatyczną w jednym z ponad 25 poznanych genów związanych z rozwojem PPGL. W oparciu o rolę kodowanych białek, geny te zostały podzielone na trzy klastry.
Klaster 1 obejmuje geny kodujące białka o aktywności enzymatycznej biorące udział w cyklu Krebsa oraz białka związane ze szlakiem hipoksji. PPGLs związane z mutacjami genów należących do klastra 1 zazwyczaj rozwijają się z autonomicznych zwojów współczulnych lub przywspółczulnych (przyzwojaki głowy i szyi), charakteryzują się zwiększoną sekrecją metabolitów noradrenaliny i/lub dopaminy oraz znacznym ryzykiem tworzenia przerzutów. Klaster 2 to geny kodujące białka związane ze szlakiem sygnałowym kinaz – u chorych z PPGL uwarunkowanymi mutacjami należącymi do tego klastra zazwyczaj stwierdza się guzy chromochłonne, podwyższone stężenie metabolitów adrenaliny w diagnostyce biochemicznej, a rozsiana postać występuje rzadko. Najmniej poznany klaster 3 skupia geny związane ze szlakiem sygnałowym Wnt – wśród tych pacjentów dominują guzy zlokalizowane w nadnerczach o agresywnym przebiegu.
W tym artykule poglądowym zostały przedstawione uwarunkowania molekularne podziału PPGLs na klastery, a także kliniczne, biochemiczne, obrazowe oraz terapeutyczne implikacje proponowanej klasyfikacji.
Bibliografia
(1) Mete O, Asa SL, Gill AJ, Kimura N, de Krijger RR, Tischler A. Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas. Endocr Pathol 2022; 33(1):90-114. DOI:10.1007/s12022-022-09704-6.
(2) Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell 2017; 31(2):181-93. DOI:10.1016/j.ccell.2017.01.001.
(3) Nolting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, et al. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43(2):199-239. DOI:10.1210/endrev/bnab019.
(4) Jochmanova I, Pacak K. Genomic Landscape of Pheochromocytoma and Paraganglioma. Trends Cancer 2018; 4(1):6-9. DOI:10.1016/j.trecan.2017.11.001.
(5) Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet 2011; 20(20):3974-85. DOI:10.1093/hmg/ddr324.
(6) Luchetti A, Walsh D, Rodger F, Clark G, Martin T, Irving R, et al. Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. Int J Endocrinol 2015; 2015:138573. DOI:10.1155 /2015/138573.
(7) Pacak K. New Biology of Pheochromocytoma and Paraganglioma. Endocr Pract 2022; 28(12):1253-69. DOI:10.1016/j.eprac.2022.09.003.
(8) Lenders JWM, Kerstens MN, Amar L, Prejbisz A, Robledo M, Taieb D, et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens 2020; 38(8):1443-56. DOI:10.1097/HJH.0000000000002438.
(9) Buffet A, Ben Aim L, Leboulleux S, Drui D, Vezzosi D, Libe R, et al. Positive Impact of Genetic Test on the Management and Outcome of Patients With Paraganglioma and/or Pheochromocytoma. J Clin Endocrinol Metab 2019; 104(4):1109-18. DOI:10.1210/jc.2018-02411.
(10) Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial Complex II: At the Crossroads. Trends Biochem Sci 2017; 42(4):312-25. DOI:10.1016/j.tibs.2017.01.003.
(11) Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 2016; 41(3):211-8. DOI:10.1016/j.tibs.2015.12.001.
(12) Bancos I, Bida JP, Tian D, Bundrick M, John K, Holte MN, et al. High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. PLoS One 2013; 8(2):e56827. DOI:10.1371/journal.pone.0056827.
(13) Taieb D, Pacak K. New Insights into the Nuclear Imaging Phenotypes of Cluster 1 Pheochromocytoma and Paraganglioma. Trends Endocrinol Metab 2017; 28(11):807-17. DOI:10.1016/j.tem.2017.08.001.
(14) Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005; 1(1):72-80. DOI:10.1371/journal.pgen.0010008.
(15) Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ 2008; 15(4):621-7. DOI:10.1038/cdd.2008.12.
(16) Lin EP, Chin BB, Fishbein L, Moritani T, Montoya SP, Ellika S, et al. Head and Neck Paragangliomas: An Update on the Molecular Classification, State-of-the-Art Imaging, and Management Recommendations. Radiol Imaging Cancer 2022; 4(3):e210088. DOI:10.1148/rycan.210088.
(17) Kantorovich V, Pacak K. New insights on the pathogenesis of paraganglioma and pheochromocytoma. F1000Res 2018; 7. DOI:10.12688/f1000research.14568.1.
(18) Comino-Mendez I, de Cubas AA, Bernal C, Alvarez-Escola C, Sanchez-Malo C, Ramirez-Tortosa CL, et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet 2013; 22(11):2169-76. DOI:10.1093/hmg/ddt069.
(19) Pang Y, Gupta G, Yang C, Wang H, Huynh TT, Abdullaev Z, et al. A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2(V617F) positive polycythemia vera: a case report. BMC Cancer 2018; 18(1):286. DOI:10.1186/s12885-018-4127-x.
(20) Toledo RA, Qin Y, Cheng ZM, Gao Q, Iwata S, Silva GM, et al. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res 2016; 22(9):2301-10. DOI:10.1158/1078-0432.CCR-15-1841.
(21) Icard P, Lincet H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta 2012; 1826(2):423-33. DOI:10.1016/j.bbcan.2012.07.001.
(22) Remacha L, Curras-Freixes M, Torres-Ruiz R, Schiavi F, Torres-Perez R, Calsina B, et al. Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med 2018; 20(12):1644-51. DOI:10.1038/s41436-018-0003-y.
(23) Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H, et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 2008; 22(7):884-93. DOI:10.1101/gad.1648608.
(24) Evenepoel L, Helaers R, Vroonen L, Aydin S, Hamoir M, Maiter D, et al. KIF1B and NF1 are the most frequently mutated genes in paraganglioma and pheochromocytoma tumors. Endocr Relat Cancer 2017; 24(8):L57-L61. DOI:10.1530/ERC-17-0061.
(25) Fell SM, Li S, Wallis K, Kock A, Surova O, Rraklli V, et al. Neuroblast differentiation during development and in neuroblastoma requires KIF1Bbeta-mediated transport of TRKA. Genes Dev 2017; 31(10):1036-53. DOI:10.1101/gad.297077.117.
(26) Gimenez-Roqueplo AP, Robledo M, Dahia PLM. Update on the genetics of paragangliomas. Endocr Relat Cancer 2023; 30(4). DOI:10.1530/ERC-22-0373.
(27) Yeh IT, Lenci RE, Qin Y, Buddavarapu K, Ligon AH, Leteurtre E, et al. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet 2008; 124(3):279-85. DOI:10.1007/s00439-008-0553-1.
(28) Cardot Bauters C, Leteurtre E, Carnaille B, Do Cao C, Espiard S, Penven M, et al. Genetic predisposition to neural crest-derived tumors: revisiting the role of KIF1B. Endocr Connect 2020; 9(10):1042-50. DOI:10.1530/EC-20-0460.
(29) Morin A, Goncalves J, Moog S, Castro-Vega LJ, Job S, Buffet A, et al. TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2alpha-Driven Mesenchymal Transition. Cell Rep 2020; 30(13):4551-66 e7. DOI:10.1016/j.celrep. 2020.03.022.
(30) Timmers HJ, Kozupa A, Eisenhofer G, Raygada M, Adams KT, Solis D, et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 2007; 92(3):779-86. DOI:10.1210/jc.2006-2315.
(31) Cascon A, Calsina B, Monteagudo M, Mellid S, Diaz-Talavera A, Curras-Freixes M, et al. Genetic bases of pheochromocytoma and paraganglioma. J Mol Endocrinol 2023; 70(3). DOI:10.1530/JME-22-0167.
(32) Jochmanova I, Wolf KI, King KS, Nambuba J, Wesley R, Martucci V, et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol 2017; 143(8):1421-35. DOI:10.1007/s00432-017-2397-3.
(33) Lee H, Jeong S, Yu Y, Kang J, Sun H, Rhee JK, et al. Risk of metastatic pheochromocytoma and paraganglioma in SDHx mutation carriers: a systematic review and updated meta- -analysis. J Med Genet 2020;57(4):217-25. DOI:10.1136/jmedgenet-2019-106324.
(34) Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 2010; 11(4):366-72. DOI:10.1016/S1470-2045(10)70007-3.
(35) Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 2004; 11(4):897-911. DOI:10.1677/erc.1.00838.
(36) Gimm O, Koch CA, Januszewicz A, Opocher G, Neumann HP. The genetic basis of pheochromocytoma. Front Horm Res 2004; 31:45-60. DOI:10.1159/000074657.
(37) Crona J, Lamarca A, Ghosal S, Welin S, Skogseid B, Pacak K. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr Relat Cancer 2019; 26(5):539-50. DOI:10.1530/ERC-19-0024.
(38) Milos IN, Frank-Raue K, Wohllk N, Maia AL, Pusiol E, Patocs A, et al. Age-related neoplastic risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germ line RET Cys634Trp (TGC>TGG) mutation. Endocr Relat Cancer 2008; 15(4):1035-41. DOI:10.1677/ERC-08-0105.
(39) Curras-Freixes M, Pineiro-Yanez E, Montero-Conde C, Apellaniz-Ruiz M, Calsina B, Mancikova V, et al. PheoSeq: A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics. J Mol Diagn 2017; 19(4):575-88. DOI:10.1016/j.jmoldx.2017.04.009.
(40) Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 2012; 18(10):2828-37. DOI:10.1158/1078-0432.CCR-12-0160.
(41) Deng Y, Flores SK, Cheng Z, Qin Y, Schwartz RC, Malchoff C, et al. Molecular and phenotypic evaluation of a novel germline TMEM127 mutation with an uncommon clinical presentation. Endocr Relat Cancer 2017; 24(11):L79-L82. DOI:10.1530/ERC-17-0359.
(42) Rao D, Peitzsch M, Prejbisz A, Hanus K, Fassnacht M, Beuschlein F, et al. Plasma methoxytyramine: clinical utility with metanephrines for diagnosis of pheochromocytoma and paraganglioma. Eur J Endocrinol 2017; 177(2):103-13. DOI:10.1530/EJE-17-0077.
(43) Eisenhofer G, Prejbisz A, Peitzsch M, Pamporaki C, Masjkur J, Rogowski-Lehmann N, et al. Biochemical Diagnosis of Chromaffin Cell Tumors in Patients at High and Low Risk of Disease: Plasma versus Urinary Free or Deconjugated O-Methylated Catecholamine Metabolites. Clin Chem 2018; 64(11):1646-56. DOI:10.1373/clinchem.2018.291369.
(44) Eisenhofer G, Deutschbein T, Constantinescu G, Langton K, Pamporaki C, Calsina B, et al. Plasma metanephrines and prospective prediction of tumor location, size and mutation type in patients with pheochromocytoma and paraganglioma. Clin Chem Lab Med 2020; 59(2):353-63. DOI:10.1515/cclm-2020-0904.
(45) Eisenhofer G, Pacak K, Huynh TT, Qin N, Bratslavsky G, Linehan WM, et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr Relat Cancer 2011; 18(1):97-111. DOI:10.1677/ERC-10-0211.
(46) Eisenhofer G, Lenders JW, Siegert G, Bornstein SR, Friberg P, Milosevic D, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer 2012; 48(11):1739-49. DOI:10.1016/j.ejca.2011.07.016.
(47) Timmers HJ, Pacak K, Huynh TT, Abu-Asab M, Tsokos M, Merino MJ, et al. Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. J Clin Endocrinol Metab 2008; 93(12):4826-32. DOI:10.1210/jc.2008-1093.
(48) Qin N, de Cubas AA, Garcia-Martin R, Richter S, Peitzsch M, Menschikowski M, et al. Opposing effects of HIF1alpha and HIF2alpha on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC-associated factor X. Int J Cancer 2014; 135(9):2054-64. DOI 10.1002/ijc.28868.
(49) Funahashi H, Imai T, Tanaka Y, Tobinaga J, Wada M, Matsuyama T, et al. Discrepancy between PNMT presence and relative lack of adrenaline production in extra-adrenal pheochromocytoma. J Surg Oncol 1994; 57(3):196-200. DOI:10.1002/jso.2930570312.
(50) Buitenwerf E, Korteweg T, Visser A, Haag C, Feelders RA, Timmers H, et al. Unenhanced CT imaging is highly sensitive to exclude pheochromocytoma: a multicenter study. Eur J Endocrinol 2018; 178(5):431-7. DOI:10.1530/EJE-18-0006.
(51) Buitenwerf E, Berends AMA, van Asselt ADI, Korteweg T, Greuter MJW, Veeger NJM, et al. Diagnostic Accuracy of Computed Tomography to Exclude Pheochromocytoma: A Systematic Review, Meta-analysis, and Cost Analysis. Mayo Clin Proc 2019; 94(10):2040-52. DOI:10.1016/j.mayocp.2019.03.030.
(52) Araujo-Castro M, Garcia Centeno R, Robles Lazaro C, Parra Ramirez P, Gracia Gimeno P, Rojas-Marcos PM, et al. Predictive model of pheochromocytoma based on the imaging features of the adrenal tumours. Sci Rep 2022; 12(1):2671.DOI:10.1038/s41598-022-06655-0.
(53) Taieb D, Hicks RJ, Hindie E, Guillet BA, Avram A, Ghedini P, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019; 46(10):2112-37. DOI:10.1007/s00259-019-04398-1.
(54) Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel) 2019; 11(10):1505. DOI:10.3390/cancers11101505.
(55) Turkova H, Prodanov T, Maly M, Martucci V, Adams K, Widimsky J Jr, et al. Characteristics and Outcomes of Metastatic Sdhb and Sporadic Pheochromocytoma/Paraganglioma: An National Institutes of Health Study. Endocr Pract 2016; 22(3):302-14. DOI:10.4158/EP15725.OR.
(56) Fishbein L, Ben-Maimon S, Keefe S, Cengel K, Pryma DA, Loaiza-Bonilla A, et al. SDHB mutation carriers with malignant pheochromocytoma respond better to CVD. Endocr Relat Cancer 2017; 24(8):L51-L5. DOI:10.1530/ERC-17-0086.
(57) Jin XF, Spoettl G, Maurer J, Nolting S, Auernhammer CJ. Inhibition of Wnt/beta-Catenin Signaling in Neuroendocrine Tumors in vitro: Antitumoral Effects. Cancers (Basel) 2020; 12(2). DOI:10.3390/cancers12020345.
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.