The hypothalamic-pituitary-gonadal axis dysfunction in men practicing competitive sports
PDF

Keywords

competitive sport
overtraining
hypogonadism

How to Cite

Dudek, P., Kozakowski, J., & Zgliczyński, W. (2020). The hypothalamic-pituitary-gonadal axis dysfunction in men practicing competitive sports. Wiedza Medyczna, 2(2), 31-36. https://doi.org/10.36553/wm.58

Abstract

Regular physical activity is widely recommended for primary and secondary prevention of many diseases. Among others, it has been proven to reduce the risk of coronary heart disease, stroke, diabetes, hypertension, colorectal cancer, breast cancer and depression. In addition, physical activity plays an important role in regulating the body's energy balance, and therefore controls body weight. Physical inactivity was identified as the fourth leading risk factor for global mortality (6% of deaths worldwide) after factors such as elevated blood pressure (13%), smoking (9%) and high blood glucose (6%). The purpose of this article is to illustrate the physiological and pathological changes that occur in the hypothalamic-​-pituitary-gonadal axis (HPG) secondary to exercise and training. Relatively short and intensive exercise usually increases, while more prolonged exercise usually decreases serum testosterone concentrations. Reduced or low-normal circulating testosterone levels involve health consequences such as an increased risk of abnormal spermatogenesis, infertility problems, and compromised bone mineralization. In addition, the administration of prohibited substances, such as anabolic androgenic steroids, to competitive and non-competitive athletes is an important cause of iatrogenic andrological diseases.

https://doi.org/10.36553/wm.58
PDF

References

(1) Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.

(2) Schuch F, Vancampfort D, Richards J, et al. Exercise as a treatment for depression: a meta-analysis adjusting for publication bias. J Psychiatr Res 2016; 77:42-51.

(3) Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ 2006; 174(6):801-9.

(4) Global health risks: mortality and burden of disease attributable to selected major risks. Geneva. World Health Organization 2009.

(5) Global action plan on physical activity 2018-2030: more active people for a healthier Word. Geneva. World Health Organization 2018.

(6) United States. Public Health Service. Office of the Surgeon General, National Center for Chronic Disease Prevention, Health Promotion (US), President’s Council on Physical Fitness, & Sports (US). Jones & Bartlett Learning. Physical activity and health: a report of the surgeon general. 1996.

(7) Go AS, Mozaffarian D, Roger VL, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics update: a report from the American Heart Association. Circulation 2013; 127:e6-e245.

(8) Hagmar M, Berglund B, Brismar K, et al. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin J Sport Med 2013; 23:197-201.

(9) Di Luigi L, Romanelli F, Sgro P, et al. Andrological aspects of physical exercise and sport medicine. Endocrine 2012; 42:278-284.

(10) Lanfranco F, Strasburger CJ [eds.]: Sports Endocrinology. Front Horm Res. Basel, Karger 2016. vol. 47; 27-43. DOI:10.1159/000445154.

(11) Hayes FJ, Crowley WF. Gonadotropin pulsations across development. Horm Res 1998; 49:163-168.

(12) Lei ZM, Mishra S, Zou W, et al. Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 2001; 15:184-200.

(13) Griffin JE, Wilson JD. Zaburzenia dotyczące jąder. W Fauci A [red.]: Harrison’s Principles of Internal Medicine Fourteenth Edition 2000; 366:3510-3516.

(14) Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocrine Reviews 2003; 24:313-40.

(15) Flueck CE, Pandey AV. Testicular steroidogenesis. [In.]: Simoni M, Huhtaniemi IT, editors. Endocrinology of the testis and male reproduction, Endocrinology 1. Switzerland: Springer International Publishing AG 2017; 343-71.

(16) de Ronde W, de Jong FH. Aromatase inhibitors in men: effects and therapeutic options. Reprod Biol Endocrinol 2011; 9:93.

(17) Stoffel-Wagner B, Watzka M, Schramm J, Bidlingmaier F, Klingmüller D. Expression of CYP19 (aromatase) mRNA in different areas of the human brain. J Steroid Biochem Mol Biol 1999; 70:237-241.

(18) Luetjens CM, Weinbauer GF. Testosterone: biosynthesis, transport, metabolism and (non genomic) actions. W Nieschlag E, Behre HM. [red.]: Testosterone: action, deficiency, substitution. Cambridge University Press, Cambridge 2012; 2:15-33.

(19) Vingren JL, Kraemer WJ, Ratamess NA, et al. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med 2010; 40:1037-1053.

(20) Crewther BT, Cook C, Cardinale M, et al. Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Med 2011; 41:103-123.

(21) Hackney AC. Exercise as a stressor to the neuroendocrine system. Medicina (Kaunas) 2006; 42(10):788-797.

(22) The male reproductive system, exercise, and training: endocrine adaptations. Hackney C, Constantini NW [red.]: Endocrinology of Physical Activity and Sport, Contemporary Endocrinology, Springer Nature Switzerland AG 2020; 109-121.

doi.org/10.1007/978-3-030-33376-8.

(23) Sherk VD, Sherk KA, Kim S, et al. Hormone responses to a continuous bout of rock climbing in men. Eur J Appl Physiol 2011; 111:687-93.

(24) Grandys M, Majerczak J, Zapart-Bukowska J, et al. Gonadal hormone status in highly trained sprinters and in untrained men. J Strength Cond Res 2011; 25:1079-84.

(25) Derbré F, Vincent S, Maitel B, et al. Androgen responses to sprint exercise in young men. Int J Sports Med 2010; 31:291-7.

(26) Häkkinen K, Pakarinen A, Newton RU, et al. Acute hormone responses to heavy resistance lower and upper extremity exercise in young versus old men. Eur J Appl Physiol 1998; 77:312-9.

(27) Sgro P, Romanelli F, Felici F, et al. Testosterone responses to standardized short-term sub-maximal and maximal endurance exercises: issues on the dynamic adaptive role of the hypothalamic-pituitary-testicularaxis. J Endocrinol Invest 2014; 37(1):13-24.

(28) Sansone A, Sansone M, Vaamonde D et al. Sport, doping and male fertility. Reproductive Biology and Endocrinology 2018; 16:114. doi.org/10.1186/s12958-018-0435-x.

(29) Ahmadizad S, El-Sayed MS The acute effects of resistance exercise on the main determinants of blood rheology. J Sports Sci 2005; 23:243-249.

(30) Jezová D, Vigas M. Testosterone response to exercise during blockade and stimulation of adrenergic receptors in man. Horm Res 1981; 15:141-7.

(31) Hackney AC, Viru MD. Sports Physiology and Endocrinology (Endurance vs. Resistance Exercise) [In:] Vaamonde et al. [eds.]: Exercise and Human Reproduction. Springer New York 2016; 75-92. DOI:10.1007/978-1-4939-3402-7_5.

(32) Hackney AC, Koltun KJ. The immune system and overtraining in athletes: clinical implications. Acta Clin Croat 2012; 51(4):633-41.

(33) Cano Sokoloff N, Misra M, Ackerman KE. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men and women. Front Horm Res 2016; 47:27-43.

(34) Hackney AC. Hypogonadism in Exercising Males: Dysfunction or Adaptive-Regulatory Adjustment? Front Endocrinol 2020; 11:11. DOI:10.3389/fendo.2020.00011.

(35) Mountjoy M, Sundgot-Borgen J, Burke L, et al. International Olympic Committee (IOC) Consensus statement on Relative Energy Deficiency in Sport (RED-S): 2018 update. Int J Sport Nutr Exerc Metab (2018); 28:316-31. DOI:10.1123/ijsnem.2018-0136.

(36) Kreider R, Fry AC, O’Toole M. Overtraining in sport: terms, definitions, and prevalence. [In.]: Kreider R, Fry AC, O’Toole M, [red.]: Overtraining in sport. Champaign: Human Kinetics; 1998.

(37) Hackney AC. Chronic Low Testosterone Levels in Endurance Trained Men: The Exercise- Hypogonadal Male Condition.J Biochem Physiol. 2018; 1(1):103.

(38) Dohle GR, Arver S, Bettocchi C et.al. EAU Guidelines on Male Hypogonadism. Male hypogonadism – limited text update march 2017. www.uroweb.org/guidelines/.

(39) MacConnie S, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 1986; 315:411-7.

(40) Di Luigi L, Guidetti L, Baldari C, et.al. Physical stress and qualitative gonadotropin secretion: LH biological activity at rest and after exercise in trained and untrained men. Int J Sports Med 2002; 23:307-12.

(41) Cumming DC, Quigley ME, Yen SS. Acute suppression of circulating testosterone levels by cortisol in men. J Clin Endocrinol Metab 1983; 57:671-3. DOI:10.1210/jcem-57-3-671.

(42) Narayan E, Parisella S. Influence of the stress endocrine system on the reproductive endocrine axis in sheep (Ovis aries). Ital J Anim Sci 2017; 4:640-51. DOI:10.1080/1828051X.2017.132197.

(43) Dwyer AA, Chavan NR, Lewkowitz-Shpuntoff et.al. Functional Hypogonadotropic Hypogonadism in Men: Underlying Neuroendocrine Mechanisms and Natural HistoryJ Clin Endocrinol Metab 2019 Aug; 104(8):3403-3414. DOI:10.1210/jc.2018-02697.

(44) Bergendahl M, Perheentupa A, Huhtaniemi I. Starvation-induced suppression of pituitary-testicular function in rats is reversed by pulsatile gonadotropin-releasing hormone substitution. Biol Reprod 1991; 44:413-9. DOI:10.1095/biolreprod 44. 3.413.

(45) Wang K, Fan D, Differential expression of 5 alpha reductase isozymes in the prostate and its clinical implications. Asian J Androl 2014 16; 274-279; DOI:10.4103/1008-682X.123664.

(46) Arce JC, DeSouza MJ. Exercise and male factor infertility. Sports Med 1993; 15:146-69.

(47) Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: a randomized controlled study. J Endocrinol 2009; 200:259-71.

(48) Wise LA, Cramer DW, Hornstein MD, Ashby RK, Missmer SA. Physical activity and semen quality among men attending an infertility clinic. Fertil Steril 2011; 95:1025-30.

(49) Pelliccione F, Verratti V, D’Angeli A, et.al. Physical exercise at high altitude is associated with a testicular dysfunction leading to reduced sperm concentration but healthy sperm quality. Fertility and Sterility; 96; 28-33.

(50) Gebreegziabher Y, Marcos E, McKinon W, et al. Sperm characteristics of endurance trained cyclists. Int J Sports Med 2004; 25:247-51.

(51) Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 2001; 31:911-22.

(52) Walczak-Jędrzejowska R. Stres oksydacyjny a niepłodność męska. Część I: czynniki wywołujące stres oksydacyjny w nasieniu. Postępy Andrologii on-line 2015.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Metrics



Downloads

Download data is not yet available.