Abstract
Vitamin D (VD) is a steroid prohormone that regulates the body's calcium and phosphate levels in bone mineralization. It is also well described as a fat-soluble vitamin playing an important role in immunomodulation, regulation of cytokines, and cell proliferation. Thus, VD is a powerful hormone with pleiotropic effects, which acts to maintain optimal health. Recent studies demonstrate that VD deficiency is associated with the development of autoimmune disorders. Vitamin D generates many extraskeletal effects due to the vitamin D receptor (VDR) which is present in most tissues throughout the body. This paper reviews the recent data on the role of vitamin D in the genesis of various immunological disorders. The possible role of vitamin D in infections is implied from its impact on the innate and adaptive immune responses. A significant effect is the suppression of inflammatory processes. It inhibits immune reactions in general, but it enhances the transcription of "endogenous antibiotics" such as cathelicidin and defensins. VD inhibits the genesis of both Th1 – and Th2-cell mediated diseases. Th1 – dependent autoimmune diseases (e.g., multiple sclerosis, Type 1 diabetes, Crohn's disease, rheumatoid arthritis and so on) are also inhibited by VD due to inhibition of antigen presentation, reduced polarization of Th0 cells to Th1 cells and reduced production of cytokines from the latter cells. VD seems to also be a useful adjunct in the prevention of allograft rejection. Cardiac and coagulopathic features of COVID-19 disease deserve attention as they may be related to vitamin D. There are also intriguing potential links to vitamin D as a factor in the cytokine storm that consist some of the most serious consequences of SARS-CoV-2 infection, such as the acute respiratory distress syndrome. Finally, the current clinical data strongly associate vitamin D with SARS-CoV-2 infection, however a putative clinical link that at this time must still be considered hypothetical.
References
(1) Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010; 376(9736):180-188.
(2) Ahn J, Yu K, Stolzenberg-Solomon R, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 2010; 19(13):2739-2745.
(3) Engelman CD, Meyers KJ, Ziegler JT, et al. Genome-wide association study of vitamin D concentrations in Hispanic Americans: the IRAS family study. J Steroid Biochem. Mol Bio 2010; 122(4):186-192.
(4) Signorello LB, Shi J, Cai Q, et al. Common variation in vitamin D pathway genes predicts circulating 25-hydroxyvitamin D levels among African Americans. PLoS One 2011; 6(12):e28623.
(5) Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 2005; 26(5):662-687.
(6) White JH. Vitamin D signalling, infectious diseases and regulation of innate immunity. Infect Immun 2008; 76(9):3837-3843.
(7) Wang TT, Nestel FP, Bordeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004; 173(5):2909-2912.
(8) Bossé Y, Maghni K, Hudson TJ. 1α,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility and remodelling processes. Physiol. Genomics 2007; 29:161-168.
(9) Hewison M. Vitamin D and the intracrinology of innate immunity. Molecular and Cellular Endocrinology 2010; 321,103-111.
(10) Hewison M, Freeman L, Hughes SV, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol 2003; 170(11):5382-5390.
(11) Overbergh L, Decallonne B, Waer M, et al. 1α,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524-543). Diabetes 2000; 49(8):1301-1307.
(12) Overbergh L, Decallone B, Waer M. et al. Immune regulation of 25-hydroxyvitamin D-1α-hydroxylase in human monocytic THP-1 cells: mechanisms of interferon-γ-mediated induction. J Endocrinol Metab 2006; 91:3566-3574.
(13) Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune regulation of 25-hydroxyvitamin-D3- -1α-hydroxylase in human monocytes. J Bone Miner Res 2006; 21(1):37-47.
(14) Jakóbisiak M. Główne komponenty i zasadnicze cechy odpowiedzi immunologicznej. [In.]: Immunologia, 2nd ed.; Wydawnictwo Naukowe PWN; Warsaw, Poland 1995; 28-36.
(15) Bruce D, Ooi JH, Yu S, Cantorna MT. Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp Biol Med 2010; 235:921-927.
(16) Beard JA.; Bearden A, Striker R. Vitamin D and the anti-viral state. J Clin Virol 2011; 50:194-200.
(17) Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2016; 1376:29-51.
(18) Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7:4240-4270.
(19) Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol. Infect 2006; 134:1129-1140.
(20) Sundaram ME, Coleman LA. Vitamin D and influenza. Adv Nutr 2012; 3:517-525.
(21) Sadeghi K, Wessner B, Laggner U, et al. vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006; 36(2):361-370.
(22) Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol 2015; 83:83-91.
(23) Cantorna MT, Zhu Y, Froicu M, Wittke A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 2004/b; 80 (suppl. 6):171S-120S.
(24) Hughes DA, Norton R. Vitamin D and respiratory health. Clin Exp Immunol 2009; 158(1):20-25.
(25) Nizet V, Ohtake T, Lauth X et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414(6862):454-457.
(26) Saiman L, Tabibi S, Starner TD, et al. Cathelicidin peptides multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob. Agents Chemother 2001; 45:2838-2844.
(27) Zhang L, Yu W, He T, et al. Contribution of human α-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 2002; 298(5595):995-1000.
(28) Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3(9):710-720.
(29) Menzies BE, Kenoyer A. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human β-defensin 3 in skin keratinocytes. Infect Immunol 2006; 74(12):6847-6854.
(30) Herr C, Shaykhiev R, Bals R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin Biol Ther 2007; 7 (9):1449-1461.
(31) Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 2007; 6(6):403-410.
(32) Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007; 179(4):2060-2063.
(33) Martineau AR, Wilkinson KA, Newton SM, et al. IFNγ – and TNF – independent vitamin D – inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 2007; 178:7190-7198.
(34) Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311:1770-1773.
(35) Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, Borregaard N, Modlin RL, Hewison M. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. Journal of Immunology 2009; 182:4289-4295.
(36) Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host and Microbe 2009; 6:231-243.
(37) Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB Journal 2005; 19:1067-1077.
(38) Kim J, Yang YL, Jang SH, Jang YS. Human beta-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virology Journal 2018; 15, 124.
(39) Gough ME, Graviss EA, May EE. The dynamic immunomodulatory effects of vitamin D3 during Mycobacterium infection. Innate Immunity 2017; 23, 506-523.
(40) Hubel E, Kiefer T, Weber J, Mettang T, Kuhlmann U. In vivo effect of 1,25-dihydroxyvitamin D3 on phagocyte function in hemodialysis patients. Kidney International 1991; 40, 927-933.
(41) Subramanian K, Bergman P, Henriques-Normark B. Vitamin D promotes pneumococcal killing and modulates inflammatory responses in primary human neutrophils. Journal of Innate Immunity 2017; 9, 375-386.
(42) Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Journal of Physiology: Gastrointestinal and Liver Physiology 2008; 294, G208-G216.
(43) Shi YY, Liu TJ, Fu JH, Xu W, Wu LL, Hou AN, Zue XD. Vitamin D/VDR signaling attenuates lipopolysaccharideinduced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Molecular Medicine Reports 2016; 13, 1186-1194.
(44) Schrumpf JA, van Sterkenburg MAJA, Verhoosel RM et al. Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infection and Immunity 2012; 80(12):4485-4494.
(45) van der Does AM, Bergman P, Agerberth B, Lindbom L. Induction of the human cathelicidin LL-37 as a novel treatment against bacterial infections. Journal of Leukocyte Biology 2012; 92(4)735-742.
(46) Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7(6):4240-4270.
(47) Chun RF, Liu PT, Modlin RL, et al Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front Physiol 2014; 5, 1-15.
(48) Adler HS, Steinbrink K. Tolerogenic dendritic cells in health and disease: friend and foe. Eur J Dermatol 2007; 17(6):476-491.
(49) Massoud AH, Guay J, Shalaby KH, et al. Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin Immunol 2012; 129(6):1656-1665.e3.
(50) Van der Aar AM, Sibiryak DS, Bakdash G et al. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells. J. Allergy Clin Immunol 2011; 127(6):1532-1540.
(51) Fu S, Zhang N, Yopp AC, et al. TGF-β induces FOXp3+ T regulatory cells from CD4+ CD25+ precursors. Am J Transplant 2004; 4(10):1614-1627.
(52) Lyakh LA, Sanford M, Chekol S, et al. TGF-β and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J Immunol 2005; 174(4):2061-2070.
(53) Roncarolo MG, Gregori S, Battaglia M, et al. Interleukin-10 secreting type-1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212:28-50.
(54) Boks MA, Kager-Groenland JR, Haasjes MS, et al. IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction – a comparative study of human clinical-applicable DC. Clin Immunol 2012; 142(3):332-342.
(55) Adorini L. Tolerogenic dendritic cells induced by vitamin D receptor ligand enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad Sci 20003; 987(Apr):258-261.
(56) Adorini L, Penna G. Induction of tolerogenic dendritic cells by vitamin D receptor agonists. Handb Exp Pharmacol 2009; (188):251-273.
(57) Griffin MD, Lutz WH, Phan VA, et al. Potent inhibition of cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 2000; 270(3):701-708.
(58) Van Etten E, Mathieu C. Immunoregulation by 1,25 dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 2005; 97(1-2):93-101.
(59) Eagar TN, Tompkins SM, Miller SD. Helper T-cell subsets and control of the inflammatory response. [In.]: Clinical Immunology. Rich RR, Fleisher TA, Shearer WR et al. [Eds.]. Mosby, London, UK. Section 2, Chapter 16, 16.1-16.12 (2001).
(60) O'Shea JJ, Frucht DM, Duckett CS. Cytokines and cytokine receptors. [In.]: Clinical Immunology. Rich RR, Fleisher TA, Shearer WR et al. [Eds.]. Mosby, London, UK. Section 1, Chapter 12, 12.1-12.22 (2001).
(61) Jeffery LE, Burke RF, Mura M, et al. 1,25-dihydxroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 2009; 183(9):5458-5467.
(62) Bluestone JA. Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 1997; 158(5):1989-1993.
(63) Takahashi T, Tagami T, Yamazaki S et al. Immunological self-tolerance maintained by C25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T-lymphocyte associated antigen 4. J Exp Med 2000; 192(2):303-310.
(64) Imazeki I, Matsuzaki J, Tsuji K, Nishimura T. Immunomodulating effect of vitamin D3 derivatives on type-1 cellular immunity. Biomed Res 2006; 27(1):1-9.
(65) Barrat FJ, Cua DJ, Boonstra A, et al. In vitro generation of interleukin-10 producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J Exp Med 2002; 195(5):603-616.
(66) Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin-2 production. J Exp Med 1998; 188(2):287-290.
(67) Joshi S, Pantalena LC, Liu XK et al. 1,25-dihydoxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin 17A. Mol Cell Biol 2011; 31(17):3653-3669.
(68) Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 2000; 95(10):3183-3190.
(69) Boonstra A, Barrat FJ, Crain C, et al. α,25-dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001; 167(1):4974-4980.
(70) Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188(2):287-296.
(71) Xia JB, Wang CZ, Ma JX, An XJ. Immunoregulatory role of 1, 25-dihydroxyvitamin D(3)-treated dendritic cells in allergic airway inflammation. Zhonghua Yi Xue Za Zhi 2009; 89(8):514-518.
(72) Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057-1061.
(73) Roncarolo M-G, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 2000; 12(6):676-683.
(74) Roncarolo M-G, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193(2):F5-F9.
(75) Urry Z, Xystrakis E, Richards DF et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1α,25-dihydroxyvitamin D3 abrogates regulatory functions. J Clin Invest 2009; 119(2):387-398.
(76) Saggese G, Federico G, Balestri M, Toniolo A. Calcitriol inhibits the PHA-induced production of IL-2 and IFN-gamma and the proliferation of human peripheral blood leukocytes while enhancing the surface expression of HLA class II molecules. J Endocrinol Invest 1989; 12(5):329-335.
(77) Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin2-gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by nuclear hormone receptor. Mol Cell Biol 1995; 15(10):5789-5799.
(78) Matilainen JM, Räsänen A, Gynther P, Väisänen S. The genes encoding cytokines IL-2, IL-12 and IL-12B are primary 1α,25(OH)2D3 target genes. J Steroid Biochem Mol Biol 2010; 121(1-2):142-145.
(79) Takeuchi A, Reddy GS, Kobayashi T. Nuclear factor of activated T cells (NFAT) as a molecular target for 1α, 25-dihydroxyvitamin D3-mediated effects. J Immunol 1998; 160(1):209-218.
(80) Lemire JM, Adams JS, Kermani-Arab V et al. 1,25-dihydoxyvitamin D3 suppresses human T helper/induces lymphocyte activity in vitro. J Immunol 1985; 134(5):3022-3025.
(81) Cantorna MT, Zhao J, Yang L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc Nutr Soc 2011a; 14, 1-5.
(82) Yu S, Zhao J, Cantorna MT. Invariant NKT cell defects in vitamin D receptor knockout mice prevents experimental lung inflammation. J Immunol 2011; 187(9):4907-4912.
(83) Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29(6):726-776.
(84) Cantorna MT, Hayes CE, DeLuca HF. 1,25-dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 1996; 93(15):7861-7864.
(85) Nataf S, Garcion E, Darcy F, et al. 1,25 dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. J Neuropathol Exp Neurol 1996; 55(8):904-914.
(86) Ho SL, Alappat L, Awad AB. Vitamin D and multiple sclerosis. Crit Rev Food Sci Nutr 2012; 52(11):980-987.
(87) Brown SJ. The role of vitamin D in multiple sclerosis. Ann Pharmacother 2006; 40(6):1158-1161.
(88) Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006; 296(23):2832-2838.
(89) Froicu M, Weaver CV, Wynn TA et al. A crucial role for the vitamin D receptor in experimental bowel diseases. Mol Endocrinol 2003; 17(12):2386-2392.
(90) Lim WC, Hanauer SB, Li YC. Mechanism of disease: vitamin D and inflammatory bowel disease. Natl Clin Gastroenterol Hepatol 2005; 2(7):308-315.
(91) Park SY, Gupta D, Kim CH, Dziarski R. Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLoS ONE 2011; 6(9):e24961.
(92) Colin EM, Asmawidjaja PS, van Hamburg JP et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum 2011; 62(1):132-142.
(93) Hullett DA, Cantorna MT, Redaelli C et al. Prolongation of allograft survival by 1,25-dihydroxyvitamin D3. Transplantation 1998; 66(7):824-828.
(94) Adorini L. 1,25-dihydroxyvitamin D3 analogs as potential therapies in transplantation. Curr Opin Investig Drugs 2002; 3(10):1458-1463.
(95) Zhang AB, Zheng SS, Jia CK, Wang Y. Effect of 1,25-dihydroxyvitamin D3 on preventing allograft from acute rejection following rat orthotopic liver transplantation. World J Gastroenterol 2003; 9(5):1067-1071.
(96) Hullett DA, Laeseke PF, Malin G, Nessel R, Sollinger HW, Becker BN. Prevention of chronic allograft nephropathy with vitamin D. Transpl Int 2005; 18(10):1175-1186.
(97) Zittermann A, Tenderich G, Koerfer R. Vitamin D and the adaptive immune system with special emphasis to allergic reactions and allograft rejection. Inflamm. Allergy Drug Targets 2009; 8(2):161-168.
(98) Bitetto D, Fabris C, Falleti E et al. Vitamin D and the risk of acute allograft rejection following human liver transplantation. Liver Int 2010; 30 (3):417-444.
(99) Stein EM, Shane E. Vitamin D in organ transplantation. Osteoporos Int 2011; 22 (7):2107-2118.
(100) Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infectious Diseases 2020; 20(5):533-534.
(101) Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 2020; 382; 1708-1720.
(102) Shi S, Qin M, Shen B ,et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology 2020; 25; 802-810.
(103) Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395:1054-1062.
(104) Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X & Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine 2020; 180, 1-11.
(105) Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368, m1091.
(106) Petrilli CM, Jones SA, Yang J, at al. Factors associated with hospital admission and crticial illness among 5279 people with coronavirus disease 2019 in New York City: a prospective cohort study. BMJ 2020; 369, m1966.
(107) Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet: Diabetes and Endocrinology 2020; 8:570
(108) Marazuela M, Giustina A,Puig-Domingo M. Endocrine and metabolic aspects of the COVID-19 pandemic. Reviews in Endocrine and Metabolic Disorders 2020 In press.
(109) Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2020; 14:561-565.
(110) Barlow PG, Svoboda P, Mackellar A, at al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 201; 6e25333.
(111) Campbell GR, Spector SA. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy 2012; 8(10):1523-1525.
(112) Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathogens 2012; 8(5):e1002689.
(113) Mao J, Lin E, He L, et al. Autophagy and viral infection. Advances in Experimental Medicine and Biology 2019; 1209:55-78.
(114) Mushegian AA. Autophagy and vitamin D. Science Signaling 2017; 10; eaan2526.
(115) Shin DM, Yuk JM, Lee HM, et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cellular Microbiology 2010; 121:648-1665.
(116) Jang W, Kim HJ, Li H, et al. 1,25-Dyhydroxyvitamin D(3) attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochemical and Biophysical Research Communications 2014; 451:142-147.
(117) Wang J. Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 2008; 4:947-948.
(118) Uberti F, Lattuada D, Morsanuto V, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. Journal of Clinical Endocrinology and Metabolism 2014; 99:1367-1374.
(119) Campbell GR, Spector SA. Hormonally active vitamin D3 (1alpha,25 dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. Journal of Biological Chemistry 2011; 286:18890-18902.
(120) Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathogens 2012; 8 e1003017.
(121) Khare D, Godbole NM, Pawar SD, et al. Calcitriol [1,25(OH)2D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. European Journal of Nutrition 2013; 52:1405-1415.
(122) Tian G, Liang X, Chen D, et al. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. Journal of Steroid Biochemistry and Molecular Biology 2016; 163:157-163.
(123) Abdel-Mohsen MA, El Braky A, Ghazal AAE, Shamseya MM. Autophagy, apoptosis, vitamin D, and vitamin D receptor in hepatocellular carcinoma associated with hepatitis C virus. Medicine 2018; 97:e0172.
(124) Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Reviews in Medical Virology 2019; 29:e2032.
(125) Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology 2017; 39:529-539.
(126) Chu CM, Poon LL, Cheng VC, et al. Initial viral load and the outcomes of SARS. Canadian Medical Association Journal 2004; 171:1349-1352.
(127) Oh MD, Park WB, Choe PG et al. Viral load kinetics of MERS coronavirus infection. New England Journal of Medicine 2016; 375:1303-1305.
(128) Kohlmeier JE, Cookenham T, Roberts AD et al. Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 2010; 33:96-105.
(129) Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host and Microbe 2016; 19:181-193.
(130) Zhao J, Zhao J, Perlman S. T-cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. Journal of Virology 2010; 84:9318-9325.
(131) Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. Journal of the American College of Cardiology 2020, 75:2352-2371.
(132) Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation 2020; 141:1648-1655.
(133) Bangalore S, Sharma A, Slotwiner A. et al. ST-segment elevation in patients with COVID-19 – a case series. New England Journal of Medicine 2020; 382:2478-2480.
(134) Kunutsor SK, Apekey TA, Steur M. Vitamin D and Risk of Future Hypertension: Meta Analysis of 283, 537 Participants. Springer, 2013.
(135) Song Y, Wang L, Pittas AG et al. Blood 25 hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2013; 36:1422-1428.
(136) Pereira-Santos M, Costa PR, Assis AM, et al. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obesity Reviews 2015; 16:341-349
(137) Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney International 2011. 79:715-729. 103.
(138) Yuan W, Pan W, Kong J et al. 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. Journal of Biological Chemistry 2007; 282:29821-29830.
(139) Li YC. Molecular mechanism of vitamin D in the cardiovascular system. Journal of Investigative Medicine 2011; 59:868-871.
(140) Chen S, Sun Y, Agrawal DK. Vitamin D deficiency and essential hypertension. Journal of the American Society of Hypertension 2015; 9:885-901.
(141) Ye M, Wysocki J, William J, et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. Journal of the American Society of Nephrology 2006; 17:3067-3075.
(142) Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology and Therapeutics 2010; 128:119-128.
(143) Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1-7) reduces smooth muscle growth after vascular injury. Hypertension 1999; 33:207-211.
(144) Pilz S, Tomaschitz A, Drechsler C et al. Vitamin D deficiency and myocardial diseases. Molecular Nutrition and Food Research 2010; 54:1103-1113.
(145) Wang L, Song Y, Manson JE et al. Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circulation: Cardiovascular Quality and Outcomes 2012; 5:819-829.
(146) Brøndum-Jacobsen P, Benn M, Jensen GB, Nordestgaard BG. 25-Hydroxyvitamin D levels and risk of ischemic heart disease, myocardial infarction, and early death: population based study and meta-analyses of 18 and 17 studies. Arteriosclerosis, Thrombosis, and Vascular Biology 2012; 32:2794-2802.
(147) Sokol SI, Tsang P, Aggarwal V, Melamed ML, Srinivas VS. Vitamin D status and risk of cardiovascular events: lessons learned via systematic review and meta-analysis. Cardiology in Review 2011; 19:192-201.
(148) Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Annals of Internal Medicine 2010; 152:307-314.
(149) Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014; 348:g2035.
(150) Tomson J, Emberson J, Hill M, et al. Vitamin D and risk of death from vascular and non-vascular causes in the Whitehall study and meta-analyses of 12 000 deaths. European Heart Journal 2013; 34:1365-1374.
(151) Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow up. Journal of the American College of Cardiology 2020; 75:2950-2973.
(152) Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research 2020; 191:145-147.
(153) Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis 2020; 18:1094-1099.
(154) Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis 2020; 18:844-847.
(155) Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation 2020; 142:184-186.
(156) Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 2020; 77:1-9.
(157) Entezari-Maleki T, Talasaz AH, Salarifar M, et al. Plasma vitamin D status and its correlation with risk factors of thrombosis, P-selectin and hs-CRP level in patients with venous thromboembolism; the first Study of Iranian Population. Iranian Journal of Pharmaceutical Research 2014; 13:319-327.
(158) Wu WX, He DR. Low vitamin D levels are associated with the development of deep venous thromboembolic events in patients with ischemic stroke. Clinical and Applied Thrombosis/Hemostasis 2018; 24:69S-75S.
(159) Khademvatani K, Seyyed-Mohammadzad MH, Akbari M, et al. The relationship between vitamin D status and idiopathic lower-extremity deep vein thrombosis. International Journal of General Medicine 2014; 7:303-309.
(160) Amrein K, Schnedl C, Berghold A, Pieber TR, Dobnig H. Correction of vitamin D deficiency in critically ill patients – VITdAL@ICU study protocol of a double-blind, placebo controlled randomized clinical trial. BMC Endocrine Disorders 2012; 12;27.
(161) Azim A, Ahmed A, Yadav S, et al. Prevalence of vitamin D deficiency in critically ill patients and its influence on outcome experience from a tertiary care centre in North India (an observational study). Journal of Intensive Care 2013; 1:14.
(162) Cannell JJ, Vieth R, Umhau JC, Holick MF, et al. Epidemic influenza and vitamin D. Epidemiology and Infection 2006; 134:1129-1140.
(163) Mathyssen C, Gayan-Ramirez G, Bouillon R, Janssens W. Vitamin D supplementation in respiratory diseases: evidence from randomized controlled trials. Polish Archives of Internal Medicine 2017; 127:775-784.
(164) Science M, Maguire JL, Russell ML, et al. Low serum 25 hydroxyvitamin D level and risk of upper respiratory tract infection in children and adolescents. Clinical Infectious Diseases 2013; 57:392-397.
(165) Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015; 70:617-624.
(166) Monlezun DJ, Bittner EA, Christopher KB, Camargo CA, Quraishi SA. Vitamin D status and acute respiratory infection: cross sectional results from the United States National/Health and Nutrition Examination Survey, 2001-2006. Nutrients 2015; 7:1933-1944.
(167) Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technology Assessment 2019; 23:1-44.
(168) Lau FH, Majumder R, Torabi R et al. Vitamin D insufficiency is prevalent in severe COVID-19. medRxiv 2020. https://doi.org/101101/2020.04.24.20075838.
(169) Lanham-New SA, Webb AR, Cashman KD, et al. Vitamin D and SARS-CoV-2 virus/COVID-019 disease. BMJ Nutrition, Prevention and Health 2020; 3:106-110.
(170) Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clinical and Experimental Research 2020; 32:1195-1198.
(171) Gennari L, Campi I, Merlotti D, et al. Vitamin D deficiency is independently associated with COVID-19 severity and mortality. ASBMR Annual Meeting, 2020.
(172) Isaia G, Giorgino R, Rini GB, et al. Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporosis International 2003; 14:577-582.
(173) Romagnoli E, Caravella P, Scarnecchia L, Martinez P, Minisola S. Hypovitaminosis D in an Italian population of healthy subjects and hospitalized patients. British Journal of Nutrition 1999; 81:133-137.
(174) Boccardi V, Lapenna M, Gaggi L et al. Hypovitaminosis D: a disease marker in hospitalized very old persons at risk of malnutrition. Nutrients 2019; 11:128.
(175) Daneshkhah A, Agrawal V, Eshein A, et al. The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. medRxiv 2020.04.08.20058578. https://doi.org/10.1101/2020.04.08.20058578.
(176) Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Medicine in Drug Discovery 2020; 6:100041.
(177) Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12:988.
(178) Gupta R, Hussain A, Misra A. Diabetes and COVID-19: evidence, current status and unanswered research questions. European Journal of Clinical Nutrition 2020; 74:864-870.

This work is licensed under a Creative Commons Attribution 4.0 International License.