The relation between clinical course of pheochromocytoma-paraganglioma (PPGL) and complex genetic etiology

Zależność przebiegu pheochromocytoma-paraganglioma (PPGL) od złożonej etiologii genetycznej

Alicja Szatko*¹, Dorota Leszczyńska¹, Beata Woźniak¹, Piotr Glinicki¹

¹ Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, Warsaw, Poland

Keywords:
• pheochromocytoma
• paraganglioma
• neuroendocrine tumour
• PPGL

Abstract
Recent years brought a remarkable progress in understanding the pathophysiology of rare, neuroendocrine tumors – pheochromocytomas and paragangliomas (PPGLs). Approximately 70% PPGLs are associated with germline or somatic mutation in one of more than 25 identified susceptibility genes, which were grouped into three clusters. Cluster 1 includes genes encoding proteins involved in Krebs cycle and hypoxia pathway – cluster 1 related PPGL are usually located extra-adrenally (often manifest as head and neck paragangliomas), they are also characterized by noradrenergic/dopaminergic biochemical phenotype and increased metastatic risk. Cluster 2 encompasses genes involved in kinase signaling pathway, PPGL related to cluster 2 are predominantly pheochromocytomas with adrenergic biochemical phenotype, the patients rarely develop metastases. The least known cluster 3, associated with deregulation of Wnt signaling pathway, includes exclusively somatic mutations leading to aggressive pheochromocytomas.

This review summarizes molecular background and the differences between PPGL clusters regarding clinical course, biochemical phenotype, optimal imaging modalities and targeted molecular therapies for metastatic PPGL.

Słowa kluczowe:
• guz chromochłonny
• przyzwojak
• guz neuroendokrynny
• PPGL

Streszczenie
Ostatnie lata przyniosły znaczny postęp w poznaniu patofizjologii rzadkich guzów neuroendokrynnych – guzów chromochłonnych i przyzwojaków [pheochromocytomas and paragangliomas (PPGLs)]. Około 70% PPGL związanym jest z mutacjami: germinalną lub somatyczną w jednym z ponad 25 poznanych genów związanych z rozwojem PPGL. W oparciu o rolę kodowanych białek, geny te zostały podzielone na trzy klasę.

Klaster 1 obejmuje geny kodujące białka o aktywności enzymatycznej biorące udział w cyklu Krebsa oraz białka związane ze szlakiem hipoksji. PPGL związane z mutacjami genów należących do klastra 1 zazwyczaj rozwijają się z autonomicznych zwojów współczulnych lub przywspółczulnych (przyzwojaki głowy i szyi), charakteryzują się zwiększoną sekcją metabolitów noradrenaliny i/lub dopaminy oraz znacznym ryzykiem tworzenia przerzutów. Klaster 2 to geny kodujące białka związane ze szlakiem sygnałowym kinaz – u chorych z PPGL uwarunkowanymi mutacjami należący do tego klastra zazwyczaj stwierdza się guzy chromochłonne, podwyższone stężenie metabolitów adrenergicznych w diagnostyce biochemicznej, a roszsianą postać występuje rzadko. Najmniej poznany klaster 3 skupia geny związane ze szlakiem sygnałowym Wnt – wśród tych pacjentów dominują guzy zlokalizowane w nadnerczach o agresywnym przebiegu.

W tym artykule poglądowym zostały przedstawione uwarunkowania molekularne podziału PPGL na klastry, a także kliniczne, biochemiczne, obrazowe oraz terapeutyczne implikacje proponowanej klasyfikacji.
Introduction

Pheochromocytomas and paragangliomas (PPGLs) belong to heterogeneous neuroendocrine tumors producing catecholamines. In the World Health Organisation (WHO) classification of endocrine and neuroendocrine tumors from 2022, PPGL were unified as "paragangliomas", while pheochromocytomas are referred as "intra-adrenal paragangliomas" (1).

PPGL present the highest degree of heritability among all solid tumors (2). Up to 35% of PPGL patients harbour germline mutation, while in additional 35-40% of PPGL patients somatic mutations can be found (2-6). Thus, in more than 70% of affected patients, the development of PPGL can be attributed to pathogenic mutation in one of more than 25 identified germline or somatic genes (2-7). Among PPGL susceptibility genes, 12 the most common driver genes are identified in majority of patients (7).

Recent integration of the multi-omics research led to better understanding of PPGL pathogenesis and enable to group of driver mutations into three clusters referring to the deregulated molecular pathway: pseudohypoxia (cluster 1), kinase-signaling (cluster 2), and Wnt signaling (cluster 3) (2, 3). The genetic testing has been recommended in every patient diagnosed with PPGL (optimally using time-effective Next Generation Sequencing (NGS) of the tumor tissue) and it was proven to positively influence the management and outcome (8, 9). Furthermore, the implementation of PPGL clusters allows to determine biochemical phenotype, clinical presentation, optimize diagnostics and treatment of metastatic disease, which can be considered a milestone in personalized management of PPGL (2, 3, 7).

In this review, recent insights regarding PPGL genetics, and its clinical implications are summarized.

Molecular background of PPGL clusters

Pseudohypoxia cluster 1

The first cluster of the novel molecular classification of PPGL comprises two subclusters: 1A: Krebs-cycle associated genes and 1B: hypoxia-signaling pathway-related genes (2, 3). The former subcluster includes germline succinate dehydrogenase subunits (SDHX) A, B, C and D (SDHA, SDHB, SDHC and SDHD), succinate dehydrogenase complex assembly factor 2 (SDHAF2), malate dehydrogenase 2 (MDH2), fumarate hydratase (FH), mitochondrial glutamic-oxaloacetic transaminase (GOT2), dihydrolipoamide S-succinyltransferase (DLST), 2-oxoglutarate-malate carrier (SLC25A11), and somatic isocitrate dehydrogenase 1 (IDH1) gene mutations (2, 3). The subcluster 1B encompasses von Hippel-Lindau (VHL) tumour suppressor, Egl-9 prolyl hydroxylase-1 and -2 (EGLN1/2 encoding PHD1/2), hypoxia-inducible factor 2a (HIF2A/EPAS1), and iron regulatory protein 1 (IRP1) genes (2, 3).

The mutations of the Krebs-cycle associated genes (cluster 1A) lead to impaired electron chain transport and oxidative phosphorylation in the mitochondria, which forces the switch to aerobic glycolysis (known as the Warburg effect) to generate adenosine triphosphate (ATP) (3, 10-12). The disturbance in Krebs-cycle results in accumulation of oncometabolites, namely fumarate, succinate, or 2-hydroxyglutarate (3). The consequence of increased concentration of oncometabolites (mainly succinate and fumarate) leads to DNA hypermethylation, suppression of prolyl hydroxylase, decreased hypoxia-inducible factor α (HIF-α) hydroxylation, ubiquitination, and proteasome-mediated degradation (3, 13, 14). Aerobic glycolysis may further contribute to tumor cell proliferation via acidification of microenvironment, production of reactive oxygen species (ROS), and modulation of immune response (11).

The influence of HIF-α connects cluster 1A and cluster 1B. Subunits of HIF-α have very short half-life under sufficient oxygen supply (15). Although, decreased oxygen saturation leads to diminished HIF-α hydroxylation and increased stability (15). The cluster 1 was named "pseudohypoxia" in reference to the initially described pathway activation by decreased oxygen concentration, while prefix "pseudo" was added to mark other factors than lower oxygen saturation contributing to the pathway activation (16).

The catalogue of cluster 1B susceptibility genes starts with mutations (predominantly germline, but also somatic) in VHL gene, encoding von Hippel-Lindau suppressor protein which belongs to E3 ubiquitin ligase complex, and recognizes HIF heterodimer (HIF-α and HIF-β) and delivers it to the proteasome for degradation (17). However, to be identified by Hippel-Lindau suppressor protein, HIF-1α and HIF-2α need to be hydroxylated by propyl hydroxylase domain proteins (PDH1–3) – loss-of-function germline mutations in genes encoding isoforms 1 and 2 of PHD belong to cluster 1B (3, 17). Also gain-of-function somatic HIF2A/EPAS1 mutations prolong the half-life of HIF and predispose to PPGL (18). Furthermore, there was a reported case of PPGL-polycthemia syndrome associated with IRP1 frameshift mutation, resulting in substantially decreased IRP1 protein level (19). Consequently, lack of translational suppressor (IRP-1 protein) of HIF-2α, resulted in upregulation in hypoxia pathway and erythropoietin (EPO) expression (19).

Kinase-signaling cluster 2

The kinase-signaling cluster includes the majority of PPGL (50-60%), driven predominantly by germline mutations (17). This group encompasses proto-oncogenes (rearranged during transfection (RET) tyrosine kinase gene and H-ras GTPase proto-oncogene (HRAS) and genes encoding transmembrane protein 127 (TMEM127), neurofibromin 1 (NF1) and MYC-associated factor X (MAX) (17). There are also reports including genes encoding fibroblast growth factor receptor 1 (FGFR1), MER proto-oncogene, tyrosine kinase (MERTK), tyrosine-protein kinase Met (MET), nerve growth factor receptor (NGFR) and proto-oncogene B-Raf (BRAF) into cluster 2 (2, 3, 20).

Driver mutations in cluster 2 genes result in the activation of kinase signaling pathways: phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin kinase (mTOR) and RAS-MAPK for RET, NFI, TMEM127 and HRAS, while pathogenic mutations in MAX lead to overstimulation of MYC (17). The consequences of described alterations in kinase signaling pathways include uncontrolled cell growth and proliferation, chromatin remodelling, angiogenesis, and metabolic switch from oxidative phosphorylation to glycolysis and degradation of glutamine (2, 3, 21).

Wnt signaling cluster 3

The last, yet least explored cluster 3 includes only somatic driver mutations in genes regulating Wnt/β-catenin signaling
pathway (2, 3). This group comprises of mastermind like transcriptional coactivator 3 (MAML3) fusion genes i.e. transcription factor 4 (TCF4)-MAML3 and upstream binding transcription factor, RNA polymerase I (UBTF)-MAML3 and cold shock domain-containing E1 (CSDE1) gene (2, 3, 4). Gain-of-function mutations of the abovementioned genes in this cluster promote tumor cell growth, proliferation, adhesion, motility, and ability to metastasize (4).

PPGL susceptibility genes associated with DNA hypermethylation

Apart from described three clusters, there have been identified other PPGL susceptibility genes – involved in deoxyribonucleic acid (DNA) hypermethylation, namely genes encoding histone 3.3 (H3F3A), DNA methyltransferase (DNMT3A) and isoform β of kinesin family member 1B (KIF1Bβ) (3, 20, 22, 23, 24). Although the role of KIF1B in pathogenesis of neural crest tumors and neuroblastomas was proven in independent studies, the involvement of KIF1B in PPGL development remains debatable (25, 26). In the report in 2008 by Yeh et al. family carrying a KIF1B missense variant, the mutation was confirmed only in one allele, there was also no evidence of loss of heterozygosity at the somatic level (27). Furthermore, the recent extended molecular analysis of this family revealed that the brother of the proband, who developed bilateral pheochromocytoma at the age of 31, was a carrier of germline MAX gene mutation, which was also confirmed in all family members affected by PPGL (28).

Pathogenic mutations in PPGL susceptibility genes associated with DNA hypermethylation result in decreased degradation of Hif-2α and contribute to higher metastatic potential (29). These similarities with pseudohypoxia cluster justify including genes associated with DNA hypermethylation into cluster 1.

Cluster-specific clinical features of PPGL

Better understanding of molecular basis of PPGL provides insight into cluster-specific clinical course, regarding i.a., location of the tumor, risk of metastases and comorbidities. Patients with mutations included in the pseudohypoxia cluster often develop PPGL at younger age, they are also predisposed to multifocal, recurrent PPGL with increased metastatic potential (30). Among all SDHx genes, SDHB mutations are associated with the highest metastatic risk – up to 75%, thus SDHB is considered poor prognostic factor in genetic algorithms (3, 31). The patients with SDHB mutations usually develop extra-adrenal tumors located in abdomen, pelvis, or thorax, less often these patients are diagnosed with head and neck paragangliomas (HNPGL) (32). PPGL associated with SDHD pathogenic mutations usually present as multiple HNPGL, with low metastatic risk (33). PPGL harbouring SDHC mutations are predominantly located in extra-adrenal sites (head and neck), while metastases are diagnosed in 23% of cases (33). SDHA mutations were described as a rare cause of abdominal, thoracic, and HNPGLs, with high metastatic potential – two-thirds of affected patients develop metastases (3). Mutations in SDHAF2 also predispose to extra-adrenal tumors, mainly HNPGL (34). Patients with FH- or MDH2- related PPGL usually present with multiple tumors and marked risk of metastatic disease (31).

On the contrary to PPGL harbouring SDHx mutations, pathogenic mutations in VHL are mainly associated with development of pheochromocytomas, multifocal or bilateral in 43% up to 45% of patients, while in less than 5% of affected subjects, metastases are diagnosed (31, 35, 36). Interestingly, mutations in VHL are associated with rare hereditary tumor syndrome, but pheochromocytomas are reported only in subtype 2, in 30-50% of patients as the first manifestation of the disease (31). HIF2A/EPS1-related PPGL can occur both in adrenal glands and in extra-adrenal sites (3).

PPGL associated with cluster 2 genes develop nearly exclusively in the adrenals, they are also characterized by low metastatic risk (less than 5%) (37). Syndromic manifestation of germline mutations in RET protooncogene includes three clinical subtypes: multiple endocrine neoplasia 2A (MEN2A), multiple endocrine neoplasia 2B (MEN2B) and familial medullary thyroid carcinoma (MTC), depending on the associated pathologies (31). Approximately half of MEN2 patients develop pheochromocytoma (up to 80% bilateral disease), while the PPGL is the first manifestation of MEN2 only in 12-15% of cases (31, 38). PPGL in neurofibromatosis type 1 (von Recklinghausen syndrome, caused by NF1 mutations) are found in 0.1-5.7% of patients, they are often unilateral pheochromocytomas, up to 10 % of patients develop metastases (31). It is noteworthy that in up to 20% of pheochromocytomas that are considered sporadic, somatic mutations in NF1 can be identified (39). MAX pathogenic mutations usually manifest as pheochromocytomas, often bilateral or multiple (40). Most tumors associated with TNEM127 mutations also develop in adrenal glands (41).

Somatic mutations of cluster 3 genes manifest predominantly as pheochromocytomas (2). Tumours of this cluster are characterized by aggressive phenotype, high risk of metastases and recurrence (2). In the study of Fishbein et al., PPGL associated with MAML3 fusion gene showed very high expression of Ki-67, associated with tumour cell growth and proliferation (2).

Summary of mutations associated with multiple clinical manifestations, not only PPGL, was presented in Table 1.

Differences in biochemical phenotypes

In recent years, we witnessed remarkable progress in understanding not only PPGL molecular pathogenesis but also catecholamine biosynthesis, which resulted in the switch from measurement of total catecholamines to plasma-free or fractionated urinary metanephrines in the biochemical diagnosis of PPGL (8). Current consensus of Working Group on Endocrine Hypertension of the European Society of Hypertension published in 2020 recommends the measurement of plasma-free or fractionated urinary metanephrine and normetanephrine, complemented by the determination of 3-methoxytyramine concentration in plasma for detecting dopamine-producing tumours (measurement of 3-methoxytyramine in 24 hr urine collection for PPGL diagnosis is not recommended since the most of dopamine metabolite excreted in urine derives from renal uptake and decarboxylation of circulating L-dopa) (8, 42). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is preferred analytical technique, while 2-fold increase above upper reference limit (>2 URL) provides a high suspicion of a PPGL (3, 8). Importantly, patients tested because of genetic risk have high pretest prevalence of PPGL and measurement of
Table 1. Characteristics of the pheochromocytomas-paragangliomas (PPGLs) susceptibility genes associated with syndromes or other clinical manifestations.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Encoded protein</th>
<th>Inheritance</th>
<th>Associated conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTER 1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDHA</td>
<td>Succinate dehydrogenase subunit A</td>
<td>AD</td>
<td>GIST, RCC, pituitary NET</td>
</tr>
<tr>
<td>SDHB</td>
<td>Succinate dehydrogenase subunit B</td>
<td>AD</td>
<td>GIST, RCC, pituitary NET, pulmonary chondroma</td>
</tr>
<tr>
<td>SDHC</td>
<td>Succinate dehydrogenase subunit C</td>
<td>AD</td>
<td>GIST, RCC, pituitary NET</td>
</tr>
<tr>
<td>SDHD</td>
<td>Succinate dehydrogenase subunit D</td>
<td>AD, paternal</td>
<td>GIST, RCC, pituitary NET, pulmonary chondroma</td>
</tr>
<tr>
<td>FH</td>
<td>Fumarate hydratase</td>
<td>AD</td>
<td>Cutaneous and uterine leiomyomatosis, HLRCC</td>
</tr>
<tr>
<td>MDH2</td>
<td>Malate dehydrogenase 2</td>
<td>AD</td>
<td>Early-onset severe encephalopathy</td>
</tr>
<tr>
<td>CLUSTER 1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHL</td>
<td>Von Hippel-Lindau suppressor</td>
<td>AD</td>
<td>CNS hemangioblastoma, RCC, serous pancreatic cystadenoma, pancreatic NET, retinal angioma, endolymphatic sac tumor, papillary epididymal cystadenoma</td>
</tr>
<tr>
<td>EGLN1</td>
<td>Egl-9 prolyl hydroxylase-1</td>
<td>AD</td>
<td>Polycythemia</td>
</tr>
<tr>
<td>EGLN2</td>
<td>Egl-9 prolyl hydroxylase-2</td>
<td>AD</td>
<td>Polycythemia</td>
</tr>
<tr>
<td>HIF1A/EPAS1</td>
<td>Hypoxia-inducible factor 2-alph</td>
<td>Unknown</td>
<td>Polycythemia, somatostatinoma retinal abnormalities</td>
</tr>
<tr>
<td>KIF1B</td>
<td>Kinesin Family Member 1B</td>
<td>AD</td>
<td>Neuroblastoma</td>
</tr>
<tr>
<td>RET</td>
<td>Rearranged during transfection (RET) tyrosine kinase</td>
<td>AD</td>
<td>MEN2A: MTC + PPGL + PH
MEN2B: MTC + PPGL + marfanoid habitus, ganglioneuromatosis of the gut/oral mucosa, joint laxity, skeletal deformity</td>
</tr>
<tr>
<td>CLUSTER 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF1</td>
<td>Neurofibromin 1</td>
<td>AD</td>
<td>Multiple cafe au lait spots, iris hamartoma (Lisch nodule), neurofibroma, optic glioma, inguinal and axillary freckling, breast carcinoma, sarcoma, GIST, melanoma, cognitive defects</td>
</tr>
<tr>
<td>TNEM 127</td>
<td>Transmembrane protein 127</td>
<td>AD</td>
<td>RCC</td>
</tr>
<tr>
<td>MAX</td>
<td>MYC-associated factor X</td>
<td>AD, paternal</td>
<td>Pituitary NET, renal oncocyotma</td>
</tr>
</tbody>
</table>

Abbreviations: AD – autosomal dominant; GIST – gastrointestinal stromal tumours; RCC – renal cell carcinoma; NET – neuroendocrine tumours; HLRCC – papillary renal cancer type 2; CNS – central nervous system; MEN2A – multiple neoplasia type 2A; MTC – medullary thyroid carcinoma, PH – primary hyperparathyroidism; MEN2B – multiple neoplasia type 2B.

Plasma-free metanephrines was proved to be optimal for initial biochemical testing in this group (43). Mutations in cluster 1 genes predominantly lead to development of tumors with noradrenergic or dopaminergic phenotype, in some cases, mild elevation in metanephrine is observed (35, 44). PPGL associated with pseudohypoxic cluster genes are characterized by lower catecholamine content in tumor tissue, probably attributed to continuous release patterns (45). Dopaminergic phenotype is associated with increased risk of metastatic disease (46). Rarely, PPGL caused by mutations in cluster 1 genes remain biochemically silent (no significant elevation in free plasma metanephrines or 3-methoxytyramine is observed) – this phenomenon occurs in HNPGLs and SDHB-associated extra-adrenal lesions (30, 47). Lack of epinephrine secretion is related to the molecular background of cluster 1. Pathogenic mutations of pseudohypoxia cluster lead to decreased degradation of HIF-2α, which has the ability to inhibit the expression of phenylethanolamine N-methyl transferase (PNMT) – an enzyme that transfers a methyl group to norepinephrine to form epinephrine (48, 49).

The secretory profile of PPGL associated with cluster 2 mutations differs significantly from cluster 1. The former tumors are characterized by adrenergic phenotype (except plasma-free metanephrines was proved to be optimal for initial biochemical testing in this group (43).
for mainly noradrenergic MAX-related PPGL), high content of catecholamines in tumor tissue, and often episodic release pattern (35, 44, 45). The biochemical phenotype of PPGL related to cluster 3 was not established. Interestingly, in the study of Fishbein et al. these neoplasms showed the highest expression of CHGA – gene encoding chromogranin A (CgA) (2).

Cluster-specific PPGL susceptibility genes, clinical features and biochemical phenotypes were summarized in Figure 1.

Optimal imaging modality – one for all or specific for the cluster?

The choice of imaging modality for PPGL assessment is crucial to locate the tumor before the scheduled surgery. When combined with functional imaging, specificity and sensitivity further improve, and it provides also additional advantages if targeted radionuclide therapy is planned (8). The result of molecular analysis revealing pathogenic mutation associated with PPGL may help to choose the individual patient’s imaging and functional modalities.

Since the PPGL related to cluster 1A develop mainly in the extra-adrenal sites, magnetic resonance imaging (MRI) is superior to computed tomography (CT) imaging for these patients, especially if HNPGL is suspected. However, there are a few exceptions to this rule – CT imaging is preferable for the assessment of small lesions (due to better spatial resolution and fewer motion artefacts), thoracic structures (e.g., when the lung metastases are suspected) and it allows to better assess PGL extension to the temporal bone (3). Pheochromocytomas (associated with clusters 1B, 2 and 3) present different diverse morphological features on CT imaging: heterogeneity, areas of necrosis, calcifications, haemorrhages, or cystic changes (8). Nevertheless, on unenhanced attenuation CT imaging, nearly all pheochromocytomas are >10 Hounsfield units (HU) which distinguishes them from adenomas (50, 51). On MRI, pheochromocytomas are classically described as hyperintense on T2-weighted imaging (light-bulb sign, present in one-third of the tumors), while typical hypointensity on T1-weighted imaging may be altered by the presence of haemorrhages or fat (3). Since pheochromocytomas usually do not contain a remarkable amount of intracellular lipid, signal loss on out-of-phase chemical shift MRI imaging may be helpful in diagnostic process – in the study of Araujo-Castro et al., signal loss on out-of-phase was observed in 39% of pheochromocytomas and 90% of other lesions (52).

Functional imaging is an integral part of PPGL diagnostics, and it is recommended for initial screening (and optional for the follow-up) of SDHx mutation carriers, staging if multiple lesions or metastases are present, before the surgery of pheochromocytomas ≥5 cm, and after the operative treatment of sympathetic paragangliomas, oligometastatic or multifocal disease (3). In case of SDHx-associated PPGL gallium-68 DOTA-conjugated...
somatostatin receptor-targeting peptide positron-emission tomography-computed tomography ([18F]FDOPA) should be considered as a first choice for patients with metastatic PPGL related to cluster 2 (54). Patients with multiple metastases in liver, brain and lungs should be treated immediately (8). In case of rapid progression (<6 months), chemotherapy (cyclophosphamide, vincristine, dacarbazine (CVD)) is recommended for patients with slow or moderate progression of PPGL (8). If the disease further progresses, temozolomide, tyrosine kinase inhibitors (sunitinib or cabozantinib) and immunotherapy (pembrolizumab) should be considered (3).

Apart from the therapies already used in clinical practice, there are numerous clinical trials of new treatment options which target molecular pathways in metastatic PPGL. For cluster 1 associated metastatic PPGL, chemotherapy (CVD), temozolomide, tyrosine kinase inhibitors (sunitinib or cabozantinib) and immunotherapy (pembrolizumab) should be considered (3).

In PPGL associated with mutations of Wnt signaling pathway (cluster 3) increased plasma concentration of metanephrine or normetanephrine may be observed, however further studies of cluster 3 PPGL are needed to establish distinctive biochemical phenotype and optimal radionuclide imaging techniques (54).

<table>
<thead>
<tr>
<th>Biomarker in plasma</th>
<th>Cluster 1A Krebs-cycle-associated</th>
<th>Cluster 1B hypoxia-signaling pathway-related</th>
<th>Cluster 2 kinase signaling</th>
<th>Sporadic PHEO</th>
<th>Sporadic PGL, multifocal, metastatic PPGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM, 3-MT</td>
<td>NM</td>
<td>M, NM</td>
<td>M, NM</td>
<td>NM, 3-MT</td>
<td>CgA</td>
</tr>
</tbody>
</table>

Table 2. Cluster-specific and sporadic pheochromocytoma-paraganglioma biochemical biomarkers and recommended radionuclide imaging techniques, adapted from Taieb et al. (53).

The treatment, it is recommended to perform staging and assessment of disease progression (by imaging usually over an interval of 3 months) (8). However, patients with multiple PPGL metastases in liver, brain and lungs should be treated immediately (8). In case of rapid progression (<6 months) chemotherapy (cyclophosphamide, vincristine, dacarbazine (CVD)) is a preferred option, and temozolomide is an alternative (3, 8). It is noteworthy that patients with SDHx respond better than patients with sporadic PPGL (70% vs. 30%) to classical chemotherapy (8, 56). Radionuclide therapy (high-specific-activity [131I]MBG (Azeda)conventional [131I]MBG or tetra-azacyclododecanetetra-acetic acid (DOTA) conjugated with tyrosine-containing somatostatin analogue Tyr3-octreotate (TATE) radiolabelled with lutetium-177 (177Lu-DOTATATE, Lutathera) peptide receptor radionuclide therapy (PRRT)) is recommended for patients with slow or moderate progression of PPGL (8). If the disease further progresses, temozolomide, tyrosine kinase inhibitors (TKI, sunitinib or cabozantinib) and immunotherapy (pembrolizumab) should be considered (3).

Apart from the therapies already used in clinical practice, there are numerous clinical trials of new treatment options which target molecular pathways in metastatic PPGL. For cluster 1 associated metastatic PPGL, chemotherapy (CVD), temozolomide with or without poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib), PRRT and HIF-2α inhibitors (belzutifan) either proven their efficacy or are potentially optimal regarding the targeted pathways (3). Patients with metastatic PPGL related to cluster 2 may profit the most from 2012). Radionuclide therapy (high-specific-activity [131I]MBG (Azeda)conventional [131I]MBG or tetra-azacyclododecanetetra-acetic acid (DOTA) conjugated with tyrosine-containing somatostatin analogue Tyr3-octreotate (TATE) radiolabelled with lutetium-177 (177Lu-DOTATATE, Lutathera) peptide receptor radionuclide therapy (PRRT)) is recommended for patients with slow or moderate progression of PPGL (8). If the disease further progresses, temozolomide, tyrosine kinase inhibitors (TKI, sunitinib or cabozantinib) and immunotherapy (pembrolizumab) should be considered (3).

Apart from the therapies already used in clinical practice, there are numerous clinical trials of new treatment options which target molecular pathways in metastatic PPGL. For cluster 1 associated metastatic PPGL, chemotherapy (CVD), temozolomide with or without poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib), PRRT and HIF-2α inhibitors (belzutifan) either proven their efficacy or are potentially optimal regarding the targeted pathways (3). Patients with metastatic PPGL related to cluster 2 may profit the most from [131I]MBG therapy, TKI, RAF/MEK/ERK inhibitors or PI3K/AKT/mTORC1 inhibitors (3). For the cluster 3 metastatic PPGL, potential treatment options are limited. However, antitumor activity of the porcine (PORCN) inhibitor WNT794 and the β-catenin inhibitor PRI-724 showed efficacy in neuroendocrine tumor cell lines (57).
Conclusions

Novel molecular classification of PPGL susceptibility genes provides valuable information concerning clinical course, biochemical phenotype, and optimal imaging modalities for individual PPGL patients. It also brings us closer to personalized management of PPGL. However, there are still patients diagnosed with PPGL who were not informed about the importance of molecular testing. Molecular analysis (optimally from tumor tissue) and genetic counselling should be considered an essential part of PPGL patients management. Since known genetic predisposition may help in the effective navigation through diagnostics, treatment, and follow-up of PPGL tumors, cost-effectiveness of molecular testing cannot be questioned. Further research and in-depth understanding of molecular, but also metabolomic analysis (optimally from tumor tissue) and genetic counselling about the importance of molecular testing. Molecular analysis may enable the introduction of patient-tailored therapeutic options, especially for metastatic PPGL.

References

